
REPORT DOCUMENTATION PAGE AFRL-SR-BL-TR-98-
Public reporting burden for this collection of information is estimated to average 1 hour per response, including tl
and maintaining the data needed, and completing and reviewing .the .»ollection of information. Send commen
information, including suggestions for reducing this burden.to Washington Headquarters Services, Directorate f(
1204, Arlington, VA 22202-4302, and to the Office of management and Budget, Paperwork Reduction Project (07i

fffri
thering
:tion of
/, Suite

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

December, 1994
3. REPOK.

Final

4. TITLE AND SUBTITLE
USAF Summer Research Program -1994 High School Apprenticeship Program
Final Reports, Volume 14, Rome Laboratory
6. AUTHORS

Gary Moore

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Research and Development Labs, Culver City, CA

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NI
4040 Fairfax Dr, Suite 500
Arlington, VA 22203-1613

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Contract Number: F49620-93-C-0063

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The United States Air Force High School Apprenticeship Program's (USAF- HSAP) purpose is to place
outstanding high school students whose interests are in the areas of mathematics, engineering, and science to work
in a laboratory environment. The students selected to participate in the program work in an Air Force Laboratory
for a duration of 8 weeks during their summer vacation.

14. SUBJECT TERMS
AIR FORCE HIGH SCHOOL APPRENTICESHIP PROGRAM, APPRENTICEDHIP, AIR FORCE
RESEARCH, AIR FORCE, ENGINEERING, LABORATORIES, REPORTS, SCHOOL, STUDENT,
SUMMER, UNIVERSITIES

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239.18
Designed using WordPerfect 6.1, AFOSR/XPP, Oct 96

r

UNITED STATES AIR FORCE

SUMMER RESEARCH PROGRAM - 1994

HIGH SCHOOL APPRENTICESHIP PROGRAM FINAL REPORTS

VOLUME 14

ROME LABORATORY

RESEARCH & DEVELOPMENT LABORATORIES

5800 Uplander Way

Culver City, CA 90230-6608

Program Director, RDL Program Manager, AFOSR
Gary Moore Major David Hart

Program Manager, RDL Program Administrator, RDL
Scott Licoscos Gwendolyn Smith

Program Administrator, RDL
Johnetta Thompson

Submitted to:

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

Boiling Air Force Base

Washington, D.C.

December 1994

^CQmnTWspBCTBoY

PREFACE

Reports in this volume are numbered consecutively beginning with number 1. Each report is
paginated with the report number followed by consecutive page numbers, e.g., 1-1, 1-2, 1-3; 2-1, 2-2,

2-3.

This document is one of a set of 16 volumes describing the 1994 AFOSR Summer Research
Program. The following volumes comprise the set:

VOLUME TITLE

2A&2B

3A&3B

4

5A&5B

6

7

8

9

10

11

12A & 12B

13

14

15A&15B

16

Program Management Report

Summer Faculty Research Program (SFRP) Reports

Armstrong Laboratory

Phillips Laboratory

Rome Laboratory

Wright Laboratory

Arnold Engineering Development Center, Frank J. Seiler Research

Laboratory, and Wilford Hall Medical Center

Graduate Student Research Program (GSRP) Reports

Armstrong Laboratory

Phillips Laboratory

Rome Laboratory

Wright Laboratory

Arnold Engineering Development Center, Frank J. Seiler Research

Laboratory, and Wilford Hall Medical Center

High School Apprenticeship Program (HSAP) Reports

Armstrong Laboratory

Phillips Laboratory

Rome Laboratory

Wright Laboratory

Arnold Engineering Development Center

HSAP FINAL REPORT TABLE OF CONTENTS 1-X1V

1. INTRODUCTION 1

2. PARTICIPATION IN THE SUMMER RESEARCH PROGRAM 2

3. RECRUITING AND SELECTION 3

4. SITE VISITS 4

5. HBCU/MI PARTICIPATION 4

6. SRP FUNDING SOURCES 5

7. COMPENSATION FOR PARTICD7ANTS 5

8. CONTENTS OF THE 1994 REPORT 6

APPENDICTES:

A. PROGRAM STATISTICAL SUMMARY A-l

B. SRP EVALUATION RESPONSES B-l

HSAP FINAL REPORTS

SRP Final Report Table of Contents

University/Institution Armstrong Laboratory
Author Report Title Directorate vol^_

Eugenia D Baker AL/EQP
A. Crawford Mosley High School, Lynn Haven , FL
Reinventorv of the Technical Information Center of

SaraEBerty AL/0ET "" *
Carroll High School, Dayton , OH
The Biological Effects of an ADN on Hepatocytes:

Michael J Bruggeman AL/CFHP — -
Archbishop Alter High School, Kettering, OH
Cardiac Measures of Pilot Workload: The Wright-Pa

Heather E Castellano AL/AOCR 12" 4

East Central High School, San Antonio , TX
The Directive Role of Statistics in Medicine

Christopher J Chadwell AL/CFT
James Madison High School, San antonio , TX
A Pascal Program for a PC-Based Data Acquisition S

Eleanore J Chuang AL/CFHD
Beavercreek High School, Beavercreek, OH
Evaluation of Head Scans From the HGU-53/P Helmet

Clayton J Ciomperlik AL/OEB —
East Central High School, San Antonio , TX
Concentrations of Radionuclides

Kara L Ciomperlik AL/OEA _— 12- 8
East Central High School, San Antonio , TX
Analysis of Various Samples for the Presence of Me

_ 12- 6

_ 12- 9 Joseph A Croswell AL/EQ —
A Crawford Mosley High , Lynn Haven , FL
Network Applications

Timothy ODickson AL/EQP 12- 10
Rutherford High School, Springfield, FL
Study, Design, and Modification of the Dynamic Con

Maureen D Finke AL/CFTS 12" H
New Braunfels High School, New Braunfels, TX
An Optimization Study on a 99% Purity Molecular Si

SRP Final Report Table or contents

University/Institution Armstrong Laboratory
Author Report Title Directorate Vol-Page
Angela DFoth AL/EQC 12- 12

A. Crawford Mosley High School, Lynn Haven , FL
Physical and Chemical Characterization of Columbus

Andrea L Freeman AL/OEM 12- 13
Judson High School, Converse , TX
A Study of the Mortality Rate of the TEst Organis

Jeffrey P Gavornik AL/CFT 12- 14
Roosevelt High School, San Antonio , TX
A Study on the Effects of Chronic Intermittent Exp

Mark W Giles AL/EQW 12- 15
Bay High School, Panama City , FL
Environmental Restoration Technologies Research

Michael L Gunzburger AL/CFBV 12- 16
Kettering High School, Kettering, OH
Programming Filtering Routines in the C Programmin

Brian C Harmon AL/EQC 12- 17
A. Crawford Mosley High , Lynn Haven , FL
A Study of the Nitrobenzene Reductase and its Reac

Wesley R Hunt AL/HRM 12- 18
James Madison High School, San Antonio , TX
The Knowledge Survey and Assessment (KSA) Project

Karen M Johnson AL/AOH 12- 19
James Madison High School, San Antonio , TX
Hyperbaric Medicine

Damian A Kemper AL/AOCF 12- 20
Winston Churchill High School, San Antonio , TX
Perception of the Spoken Stimuli in the S.C.O.N.E.

Nathan R Large AL/CFHD 12- 21
Northwestern High School, Springfield, OH
A Paradigm for Studying Mutually Advantageous Trad

TrangDLe AL/OEM 12- 22
Bracken ridge High School, San Antonio , TX
The Spacecraft Charging and Discharging Problem

11

SRP Final Report Table of Contents

University/institution Armstrong Laboratory
. -,tlo Directorate . vol-Page_

A^or— Report Title _ AL/Q£A iT^T
Adnana Y Lopez

East Central High School, San Antonio , TX
An Analysis of Oil/Grease in WAter and Soil

Steve J Mattingley AL/EQ
Mosley High School, Lynn Haven , FL
A Study of the Practicality of an Automated Airfie

Elizabeth A McKinley AL/HRG
Tecumseh High School, New Carlisle, OH
Digitizing of Technical Illustrations

David P McManamon AL/CFBA
Carroll High School, Dayton , OH
REPORT NOT AVAILABLE AT PRESS TIME

Amanda L Olson ^

Tina K Schuster AL/OEA
Southwest High School, San Antonio , TX
The Determination of Lead in Paint Chips

Kirk M Sexton A"™*
Northside Htth Careers HS , San Antonio, TX
Predicting Performance in Real-Time Tasks

~ c. AL/OET Ryan Q Simon
Beavercreek High School, Beavercreek , OH
The Combustion of Advanced Composite Materials

12- 24

12- 25

_ 12- 26

12- 27

12- 28

Rutherford High School, Panama City , FL
Physical and Chemical Characterization of Columbus

Christopher S Protz AL/EQP
A. Crawford Mosley High School, Lynn Haven , FL
Network Considerations

AT /fFTF - ■ ■ • 1* "
Sarah E Schanding AL,Lr

East Central High School, San Antonio , TX
REPORT NOT AVAILABLE AT PRESS TIME

ici—i AL/AOH — 12' 30

Rebecca J Scheel
James Madison High School, San Antonio , TX
The Learning of Hyperbaric Medicine

_ 12- 31

 12- 32

 12- 33

111

SRP Final Report Table of Contents

University/Institution Armstrong Laboratory
Author Report Title Directorate voi-Page
Kenneth B Spears AL/OER 12- 34

Highlands High School, San Antonio , TX
Molecular Modeling and Editing of Dalm Halides

Courtney A Sprague AL/AOCO 12- 35
Southwest High School, San Antonio , TX
A Study of the Visual Tests Performed on Air Force

Jonathan S Vinarskai AL/CFTO 12- 36
Castle His First Baptist Schoo , San Antonio , TX
Which is a Better Sleep Scoring Device for Operati

Zac J Westbrook AL/AOH 12- 37
Somerset High School, Somerset, TX
The Effectiveness of Hyperbaric Oxygen Therapy in

Thomas E Whalen AL/CFBE 12- 38
Carroll High School, Dayton , OH
Utility of Internet Based Information Systems in A

IV

SRP Final Report Table of Contents

University/institution Phillips Laboratory
,_ „.., Directorate 2—

^tW
h nA

Rep°rt Tlt1^ ■ PL/RKAP ^^
Christopher D Amos

Desert High School, Edwards, CA
Thermal Analysis of HADN and S-HAN-5

o „ o „ PL/SXO
Rhianna S DaSalla

West Mesa High School, Albuquerque , NM
Refflected Laser Communication Systems

Alexander E Dutf
La Cueva High School, Albuquerque , NM
Construction and Testing of a Dual Photodiode Rece

PL/RKAP
Bridget C Engelhardt

Paraclete High School, Lancaster, CA
A Study of Liner Compositions for Solution Propell

Daniel C Ghiglia PL/VTPC
Sandia Prep High School, Albuquerque , NM
The Construction of a Model Solar Powered Car

PL/VTET
Tad Goetz

Sandia Preparatory High School, Albuquerque , NM
Theoretical Study of Radiation and Heating Effects

PL/LIAE
DeLesley S Hutchins

Albuquerque High School, Albuquerque , NM
Programming Data Classification Procedures, Time M

^ ,. „T PLAVSSI
Caroline H Lee

Lexington Sr. High School, Lexington , MA
The Spacecraft Charging and Discharging Problem

« ... „ »«• K i PL/SXO David P Mirabal
West Mesa High School, Albuquerque, NM
High Altitude Ballon Capabilities and Options

Nicholas P Mitchell PL/WSP
Belen High School, Belen , NM
Development of the PICLL (Particle in Cell Linked

. ,- . x, PL/VTSI Julie A Niemeyer
Valley High School, Albuquerque, NM
Nickel-Cadmium Batteries

13- 2

13- 3

13- 4

13- 5

13- 6

13- 7

13- 8

13- 9

 13- 10

13- 11

SRP Fxnal Report Table ot Contents

University/Institution Phillips Laboratory
Author Report Title Directorate voi-Page
Krista M Nuttall PL/LIMI 13- 12

La Cueva High School, Albuquerque , NM
The Characterization of an Atmospheric Turbulence

Matthew J Pepper PL/WSCE 13- 13
St. Pius X High School, Albuquerque , NM
The PSPH Computer Code an the WSCD Reference Datab

Jeremy G Pepper PLAVSCD 13- 14
St. Pius X High School, Albuquerque , NM
A Study of the CIV Phenomenon and the Secondary an

Paul A Rodriguez PL/LIMI 13- 15
Santa Fe High School, Santa Fe , NM
Using Image Processing Programs to Aid Space to Gr

Alok J Saldanha PL/GPSG 13- 16
Philips Academy , Andover, MA
REPORT NOT AVAILABLE AT PRESS TIME

David M Schindler PL/LIDN 13- 17
Los Lunas High School, Los Lunas , NM
Projects in the Nonlinear Optics Branch of the Phi

MinShao PL/GPIA 13- 18
Arlington High School, Arlington , MA
A Study of the Ionsphere

Raul Torrez PL/VTRP 13 - 19
Sandia Preparatory School, Albuquerque , NM
A Study of Infrared Devices and RAdiometric Measur

Christian G Warden PL/RKCO 13 - 20
Rosamond High School, Rosamond , CA
Introduction to Electric Propulsion

VI

SRP Final Report Table of Contents

University/institution Rome Laboratory
._..,.•, Directorate vox rage

Author
1A „ Report Tltle ■ RLTÖÄÄ - "- *

Thomas J Angell
Camdcn Centra« High , Camden , NY
A Comparison Between Relational Databases and Obje

u ^o , ^ RL/ERDA -
Jonathan C Bakert .

Sauquoit Valley Central High S , Sauquoit, NY
C Programming for Digital Analysis and the Unix Op

RL/IRAP -
Craig M Belusar

Oneida High School, Oneida , NY
A Study in the Development of Specialized Software

„„. RL/IRRP -
Shawn H Bisgrove

Rome Free Academy , Rome , NY
Arc-Second Raster Chart/Map Digitized Raster Grap

„„. RL/TRAA
Stacv R Fitzsimmons

Vernon Verona Sherrill Cen Sch , Verona , NY
An Implementation of the Multiple Signal Classific

« -JW^ i- RL/C3B David W Gurecki
Rome Catholic High School, Rome , NY
The Information Superhighway: Still Under Constru

^ ■ ,« ,, . RL/OCTS Eric J Hayduk
Rome Catholic High School, Rome , NY
Developing a Software Environment for a High Perfo

¥ . ~ «,» • RL/ERMH Justin D O'Brien
Bishop Guertin High School, Nashua , NH
REPORT NOT AVAILABLE AT PRESS TIME

*„ u . T o « RL/C3CA Michael J Panara

w, u . * c u -M„ RL/OCTS Richard A Schneible
Trivium School, Lancaster , MA
Developing a Software Environment for a High Perfo

_ 14- 2

14- 3

14- 4

14- 5

14- 6

14- 7

14- 8

14- 9

Rome Free Academy , Rome , NY
Multi-Media-Creation and Uses (Using the MacroMind

A r-T.1,1 RL/C3BC 14' 10

Anne E Pletl
Notre Dame, Utica, NY
Study of Global Hypermedia Networks

14- 11

VU

SRP Final Report Table of Contents

University/institution Rome Laboratory
Author Report Title Directorate voi-Page
Nathan B Terry RL/ERDR 14 - 12

Clinton High School, Clinton , NY
ADESH as a Sample Generator for mdem

Brian P Testa RL/OCTS 14- 13
Oxford Road , New Hartford , NY
The Physical Significance of the Eigenvalues in Ad

V1H

SRP Final Report Table of Contents

Author
Christine M Baker

University/Institution

Report Title

Wright Laboratory
Directorate

WL/FIOP

Norhmont High School, Cayton , OH
Thermal Stresses in Composite Materials

Vol-Page

15- 1

Jennifer Bautista
WL/MNOE

Fort Walton Beach High , Fort Walton Beach , FL
Analysis of a Three-Penetrator Concrete Penetratio

_ 15- 2

Jessica M Behm WL/MLPJ

Kettering Fairmont High School, Kettering , OH
A Study of Silk Coatings on Thin Films

15- 3

Tim B Booher
WL/MLLM-

Tippecanoe High School, Tipp City , OH
Analysis of Spectrum Loading of SCS-6/Timetal 21s

15- 4

Kim Cabral
WL/MNOE

Choctawhatchee High School, FL Walton Beach , FL
Chemical Decomposition Using Non-Thermal Discharge

15- 5

Robyn M Carley
WL/MNOE

Ft. Walton Beach High School, Ft. Walton Beach , FL
Accuracy Verification Exercise for the Composite H

15- 6

Jason P Carranza WL/AAAF-

Chaminade-Julienne High School, Dayton , OH
The Adams Project

15- 7

George P Choung WL/FIOP

Beavercreek High School, Beavercreek , OH
Development of Astros, Version H for a Personal C

15- 8

Nick D DeBrosse WL/POTF

Kettering Fairmont High School, Kettering, OH
Advanced Gas Turbine Engine Compressor Design

15- 9

Nancy H Deibler WL/MNOE

Choctawhatchee High School, Ft Walton Beach, FL
Characterization of Core Soil Samples and Plants F

15- 10

Timothy G Donohue WL/FIOP

Carroll High School, Dayton , OH
The Building of Computer Programs and Inexpensive

15- 11

IX

SRP Final Report Table of Contents

University/Institution Wright Laboratory
Author Report Title Directorate Voi-Page
Michael J Dooley WL/MNOE _ 15- 12

Niceville High School, Niceville , FL
Investigation of Programming and UNIX Applications

Ajaj Goel WL/MLPJ 15- 13
Centerville High School, Centerville , OH
A Study of Polymer Dispersed Liquid Crystals

Christie Gooden WL/MNOE 15- 14
Fort Walton Beach High School, Fort Walton Beach , FL
Automated Integration of LAD AR Imagery and TIFF St

GaryLGrogg WL/POOS 15- 15
Carroll High School, Dayton , OH
Heat Pipe Compatibility with Aircraft

Matthew T Gudorf WL/POPT 15- 16
Carroll High School, Dayton , OH
The Analog Systems in Test Cell 22

Brian J Guilfoos WL/MLIM 15- 17
Kettering High School, Kettering , OH
CAD: A Testing of the Effectiveness of Process De

Douglas J Heil WL/AART- 15- 18
Vandalia-Butler , Vandalia , OH
Projects in Pattern Theory

Laura L Hemmer WL/MNOE 15- 19
Choctawhatchee High School, Ft Walton Beach , FL
High Surface Area Conductive Polymer Films Using A

David B Hernandez WL/MNOE 15- 20
Freeport High School, Freeport, FL
Preliminary Study for Application of IRMA Syntheti

Melanie L Hodges WL/POPT 15- 21
W.Carrollton Sr. High School, West Carrollton, OH
Parallel Gaseous Fuel Injecton into a Mach 2 Frees

Venessa L Hurst WL/MNOE 15- 22
Walton Senior High School, DeFuniak Springs , FL
Fluorodenitration of Aromatic Substrates

A Study of the Viscosity of Lubricating Oils

r. riA ii„ WL/AAAI- Joanna E Odella
Kettering Fairmont High School, Kettering, OH
Starting Here and Going Beyond

. „ WL/MNOE
Alesander Penn

Niceville High School, Niceville , FL
Design and Construction of a Fluorescence

XI

15- 24

15- 25

15- 26

SRP Final Report Table of Contents

University/Institution Wright Laboratory
. _.., Dxrectorate ™ 2—

Author Report Title . WL/p0SF -15-23
Ryan A Jasper

Carroll High School, Dayton , OH
Experiments in Fuel Research

. M WL/MNOE —
Mark E Jeffcoat _T

Choctawhatchee High School, Ft Walton Beach , FL
Segmentation of an M-60 Tank from a High-Clutter B

» v ■ i • WL/FIOP —
Andrew J Konicki .

Kettering Fairmont High School, Kettenng , Oil
Carbon-Carbon Structures Test

WL/MNOE
Barn Kress

Niceville High , Niceville , FL
The Effectiveness and Accuracy of Cadra Software

„ . n„nu WL/MLPO Sandra R McPherson
Bishop Brossart High School, Alexandria , KY
AStudyofKTA

• w« ii WL/FIOP Benjamin J Merrill
Bellbrook High School, Bellbrook , OH
Visual Instrumentation Development

«, »,-j, •«• WL/ELED Gary W Midkiff
Kettering Fairmont High School, Kettenng , OH
Porting Spice 2G.6 to UNIX

¥, .., XT . • WL/MLPJ Karthik Natarajan
Beavercreek High School, Beavercreek , OH
A Study of the Organic Reactions of Phthalocyanine

^ • • T « •• WL/POSL Christina L Noll
Tritwood-Madison High , Trotwood , OH

 15- 27

15- 28

15- 29

15- 30

15- 31

15- 32

 15- 33

SRP Final Report Table of Contents

Author
University/Institution
Report Title

Wright Laboratory
Directorate Vol-Page

Kyle Perry WL/MNOE
Crestview High School, Crestview , FL
Validation of Synthetic Imagery

15- 34

Daniel R Pfunder WL/POOS
Centerville High School, Centerville , OH
Integrated Generator Technology

15- 35

Mary Pletcher WL/MNOE
Niceville High School, Niceville , FL
Chemcial Characteristics of the Rocky Creek System

15- 36

Scott E Sadowski WL/AART-
Centerville High School, Centerville , OH
PAC vs. Area Methods of Determining "Learnability"

15- 37

Raul H Sanchez WL/ELOD
Centerville High School, Centerville , OH
Quantum Well Infrared Detector Research

15- 38

Jill M Schlotterbeck WL/POPT
Kettering Fairmont High School, Kettering , OH
A Study of Single Tube Catalyzed Heat Exchange

15- 39

Robert J Skebo WL/MLBT
Beavercreek High School, Beavercreek , OH
The Effect of Humidity on Friction and Wear for M5

15- 40

Jennifer A Starr WL/AAAF-
Trotwood Madison Sr. High Scho , Trotwood , OH
My Introduction to the Internet

15- 41

Todd D Stocken WL/ELOS
Centerville High School, Centerville , OH
The Effect of Temperature Upon Ho: YA103 Fluorescen

15- 42

David B Storch WL/ELR
Beavercreek High School, Beavercreek, OH
High Temperature/High Speed Laser Project

15- 43

Christopher J Sutton WL/FTVS
Jefferson High School, Dayton , OH
Dynamic Testing of Composites

15- 44

xn

SRP Final Report Table of Contents

Author
Thomas R Sutton

Randy Thomson

John W Vest

University/Institution

Report Title

Wright Laboratory
Directorate

WL/FIVS

Sauquoit Valley High , Sauquoit, NY
Dynamic Testing of Composites

WL/MNOE

Choctawhatchee High , Fort Walton Beach , FL
Development and Testing of a Two-Dimensional Finit

WL/MNOE

Niceville High School, Niceville , FL
Characterization of Optical Filters Built Using Sy

Vol-Page

15- 45

 15- 46

 15- 47

MR Jon R Ward

Jeffrey D Warren

Joshua A Weaver

WL/MNOE

Walton High School, DeFuniak Springs , FL
Data Acquisition, Reduction, and Storage Using Lab

WL/FIOP

Fairborn High School, Fairborn , OH
Computer Resource Team

Niceville High School, Niceville, FL
Moments and Other PC Utilities

WL/MNOE

15- 48

_ 15- 49

15- 50

Gerad M Welch
WL/AAAI-

Beavercreek High School, Beavercreek , OH
Software Assisted Component Testing for the Antenn

15- 51

Gabriel.eWWhiteWo.f WL/MNOE
Choctawhatchee High Schoo , Chcotawhatchee , FL
Laser Speckle MTF Test Automation and Characteriza

15- 52

Xlll

SRP Final Report Table of Contents

University/Institution Arnold Engineering Development Center
Author Report Title Directorate Vol-Page
Ryan B Bond Sverdrup 16- 1

Tullahoma High School, TuIIahoma, TN
Modeling Engine Test Facility Cells in Vissim

Robert B Cassady Calspan 16-2
Coffee County Cen High School, Manchester , TN
Mach-Flow Angularity Probe Calibration

Thomas L Clouse Sverdrup 16 - 3
Coffee County Central HS , Manchester , TN
Workstation Inventory Control Program

Michael L Fann Sverdrup 16 - 4
Tullahoma High School, Tullahoma , TN
The Conversion of Millivolts Measured from Thermoc

Derek E Geeting SSI 16 - 5
Shelbyville Central High , Shelbyville , TN
Lighting Calculation Study and Software Evaluation

Jennifer A Groff Sverdrup 16- 6
Franklin County Sr High School, Winchester , TN
The Use of Labview for Serial Data Transmission

James J Lemmons Bionetics 16 - 7
Coffee County Central HS , Manchester , TN
Out of Band Filter Calibration Technology Project

Lana L Matthews Sverdrup 16- 8
Coffee County Central HS , Manchester , TN
A Study of Hydrocarbon Combustion: Stoichiometry

Steve GPugh Sverdrup 16- 9
Shelbyville Central HS , Shelbyville , TN
An Analytic Capability for Predicting Sability of

Kristopher S Ray SSI 16- 10
Shelbyville Central High Schoo, Shelbyville, TN
Power Systems Analysis

xiv

1. INTRODUCTION

The Summer Research Program (SRP), sponsored by the Air Force Office of Scientific Research
(AFOSR), offers paid opportunities for university faculty, graduate students, and high school
students to conduct research in U.S. Air Force research laboratories nationwide during the summer.

Introduced by AFOSR in 1978, this innovative program is based on the concept of teaming
academic researchers with Air Force scientists in the same disciplines using laboratory facilities and
equipment not often available at associates' institutions.

AFOSR also offers its research associates an opportunity, under the Summer Research Extension
Program (SREP), to continue their AFOSR-sponsored research at their home institutions through
the award of research grants. In 1994 the maximum amount of each grant was increased from
$20,000 to $25,000, and the number of AFOSR-sponsored grants decreased from 75 to 60. A
separate annual report is compiled on the SREP.

The Summer Faculty Research Program (SFRP) is open annually to approximately 150 faculty
members with at least two years of teaching and/or research experience in accredited U.S. colleges,
universities, or technical institutions. SFRP associates must be either U.S. citizens or permanent
residents.

The Graduate Student Research Program (GSRP) is open annually to approximately 100 graduate
students holding a bachelor's or a master's degree; GSRP associates must be U.S. citizens enrolled
full time at an accredited institution.

The High School Apprentice Program (HSAP) annually selects about 125 high school students
located within a twenty mile commuting distance of participating Air Force laboratories.

The numbers of projected summer research participants in each of the three categories are usually
increased through direct sponsorship by participating laboratories.

AFOSR's SRP has well served its objectives of building critical links between Air Force research
laboratories and the academic community, opening avenues of communications and forging new
research relationships between Air Force and academic technical experts in areas of national
interest; and strengthening the nation's efforts to sustain careers in science and engineering. The
success of the SRP can be gauged from its growth from inception (see Table 1) and from the
favorable responses the 1994 participants expressed in end-of-tour SRP evaluations (Appendix B).

AFOSR contracts for adniinistration of the SRP by civilian contractors. The contract was first
awarded to Research & Development Laboratories (RDL) in September 1990. After completion of
the 1990 contract, RDL won the recompetition for the basic year and four 1-year options.

2. PARTICIPATION IN THE SUMMER RESEARCH PROGRAM

The SRP began with faculty associates in 1979; graduate students were added in 1982 and high
school students in 1986. The following table shows the number of associates in the program each
year.

Table 1: SRP Participation, by Year

YEAR Number of Participants TOTAL

SFRP GSRP HSAP

1979 70 70

1980 87 87

1981 87 87 I
1982 91 17 108 I
1983 101 53 154 1

I 1984 152 84 236 1

1 1985
154 92 246 I

1986 158 100 42 300 I
1987 159 101 73 333

1988 153 107 101 361

1989 168 102 103 373

1990 165 121 132 418

1991 170 142 132 444

1992 185 121 159 464

1993 187 117 136 440

1994 192 117 133 442

Beginning in 1993, due to budget cuts, some of the laboratories weren't able to afford to fund as
many associates as in previous years; in one case a laboratory did not fund any additional
associates. However, the table shows that, overall, the number of participating associates increased
this year because two laboratories funded more associates than they had in previous years.

3. RECRUITING AND SELECTION

The SRP is conducted on a nationally advertised and competitive-selection basis. The advertising
for faculty and graduate students consisted primarily of the mailing of 8,000 44-page SRP
brochures to chairpersons of departments relevant to AFOSR research and to administrators of
grants in accredited universities, colleges, and technical institutions. Historically Black Colleges
and Universities (HBCUs) and Minority Institutions (Mis) were included. Brochures also went to
all participating USAF laboratories, the previous year's participants, and numerous (over 600
annually) individual requesters.

Due to a delay in awarding the new contract, RDL was not able to place advertisements in any of
the following publications in which the SRP is normally advertised: Black Issues in Higher
Education, Chemical & Engineering News, IEEE Spectrum and Physics Today.

High school applicants can participate only in laboratories located no more than 20 miles from their
residence. Tailored brochures on the HSAP were sent to the head counselors of 180 high schools
in the vicinity of participating laboratories, with instructions for publicizing the program in their
schools. High school students selected to serve at Wright Laboratory's Armament Directorate
(Eglin Air Force Base, Florida) serve eleven weeks as opposed to the eight weeks normally worked
by high school students at all other participating laboratories.

Each SFRP or GSRP applicant is given a first, second, and third choice of laboratory. High school
students who have more than one laboratory or directorate near their homes are also given first,
second, and third choices.

Laboratories make their selections and prioritize their nominees. AFOSR then determines the
number to be funded at each laboratory and approves laboratories' selections.

Subsequently, laboratories use their own funds to sponsor additional candidates. Some selectees do
not accept the appointment, so alternate candidates are chosen. This multi-step selection procedure
results in some candidates being notified of their acceptance after scheduled deadlines. The total
applicants and participants for 1994 are shown in this table.

Table 2: 1994 Applicants and Participants

PARTICIPANT
CATEGORY

TOTAL
APPLICANTS

SELECTEES DECLINING
SELECTEES

SFRP

(HBCU/MI)

600

(90)

192

(16)

30

(7)
GSRP

(HBCU/MI)
322

(11)

117

(6)

11

(0)

HSAP 562 133 14

TOTAL 1484 442 55

4. SITE VISITS

During June and July of 1994, representatives of both AFOSR/NI and RDL visited each
participating laboratory to provide briefings, answer questions, and resolve problems for both
laboratory personnel and participants. The objective was to ensure that the SRP would be as
constructive as possible for all participants. Both SRP participants and RDL representatives found
these visits beneficial. At many of the laboratories, this was the only opportunity for all
participants to meet at one time to share their experiences and exchange ideas.

5. HISTORICALLY BLACK COLLEGES AND UNIVERSITIES AND MINORITY
INSTITUTIONS (HBCU/MIs)

In previous years, an RDL program representative visited from seven to ten different HBCU/MIs to
promote interest in the SRP among the faculty and graduate students. Due to the late contract
award date (January 1994) no time was available to visit HBCU/MIs this past year.

In addition to RDL's special recruiting efforts, AFOSR attempts each year to obtain additional
funding or use leftover funding from cancellations the past year to fund HBCU/MI associates. This
year, seven HBCU/MI SFRPs declined after they were selected. The following table records
HBCU/MI participation in this program.

Table 3: SRP HBCU/MI Particroation. bv Year

YEAR SFRP GSRP

Applicants Participants Applicants Participants
1985 76 23 15 11
1986 70 18 20 10
1987 82 32 32 10
1988 53 17 23 14
1989 39 15 13 4
1990 43 14 17 3
1991 42 13 8 5
1992 70 13 9 5
1993 60 13 6 2
1994 90 16 11 6

6. SRP FUNDING SOURCES

Funding sources for the 1994 SRP were the AFOSR-provided slots for the basic contract and
laboratory funds. Funding sources by category for the 1994 SRP selected participants are shown

here.

FUNDING CATEGORY SFRP GSRP HSAP

AFOSR Basic Allocation Funds 150 98*1 121*2

USAF Laboratory Funds 37 19 12

HBCU/MI By AFOSR
(Using Procured Addn'l Funds)

5 0 0

TOTAL 192 117 133 |

*1 -100 were selected, but two canceled too late to be replaced.
*2 -125 were selected, but four canceled too late to be replaced.

7. COMPENSATION FOR PARTICIPANTS

Compensation for SRP participants, per five-day work week, is shown in this table.

PARTICIPANT CATEGORY 1991 1992 1993 1994

Faculty Members $690 $718 $740 $740

Graduate Student
(Master's Degree)

$425 $442 $455 $455 1

Graduate Student
(Bachelor's Degree)

$365 $380 $391 $391 1

High School Student
(First Year)

$200 $200 $200 $200 1

High School Student
(Subsequent Years)

$240 $240 $240 $240

APPENDIX A - PROGRAM STATISTICAL SUMMARY

A. Colleges/Universities Represented

Selected SFRP and GSRP associates represent 158 different colleges, universities, and
institutions.

B. States Represented

SFRP -Applicants came from 46 states plus Washington D.C. and Puerto Rico. Selectees
represent 40 states.

GSRP - Applicants came from 46 states and Puerto Rico. Selectees represent 34 states.

HSAP - Applicants came from fifteen states. Selectees represent ten states.

C. Academic Disciplines Represented

The academic disciplines of the combined 192 SFRP associates are as follows:

Electrical Engineering 22.4%
Mechanical Engineering 14.0%
Physics: General, Nuclear & Plasma 12.2%
Chemistry & Chemical Engineering 11.2%
Mathematics & Statistics 8.1%
Psychology 7.0%
Computer Science 6.4%
Aerospace & Aeronautical Engineering 4.8%
Engineering Science 2.7%
Biology & Inorganic Chemistry 2.2%
Physics: Electro-Optics & Photonics 2.2%
Communication 1.6%
Industrial & Civil Engineering 1.6%
Physiology 1.1%
Polymer Science 1.1%
Education 0.5%
Pharmaceutics 0.5 %
Veterinary Medicine 0.5%
TOTAL 100%

A-l

Table A-1. Total Participants

Number of Participants

SFRP

GSRP

HSAP

TOTAL

192

117

133

442

Table A-2. Degrees Represented

Degrees Represented

Doctoral

Master's

Bachelor's

TOTAL

SFRP

189

3

0

GSRP

0

47

70

TOTAL

189

50

70

192 117 309

Table A-3. SFRP Academic Titles

| Academic Titles

j Assistant Professor 74

| Associate Professor 63

Professor 44 1

Instructor 5

Chairman 1

Visiting Professor 1

Visiting Assoc. Prof. 1

Research Associate 3

TOTAL 192

A-2

Table A-4. Source of Learning About SRP

SOURCE SFRP GSRP

Applicants Selectees Applicants Selectees

Applied/participated in prior years

Colleague familiar with SRP

Brochure mailed to institution

Contact with Air Force laboratory

Faculty Advisor (GSRPs Only)

Other source

26% 37% 10% 13%

19% 17% 12% 12%

32% 18% 19% 12%

15% 24% 9% 12%

- - 39% 43%

8% 4% 11% 8%

TOTAL 100% 100% 100% 100%

Table A-5. Ethnic Background of Applicants and Selectees

SFRP GSRP HSAP

Applicants Selectees Applicants Selectees Applicants Selectees

American Indian or
Native Alaskan

0.2% 0% 1% 0% 0.4% 0%

Asian/Pacific Islander 30% 20% 6% 8% 7% 10%

Black 4% 1.5% 3% 3% 7% 2%

Hispanic 3% 1.9% 4% 4.5% 11% 8%

Caucasian 51% 63% 77% 77% 70% 75%

Preferred not to answer 12% 14% 9% 7% 4% 5%

TOTAL 100% 100% 100% 100% 99% 100%

Table A-6. Percentages of Selectees receiving their 1st, 2nd, or 3rd Choices of Directorate

1st
Choice

2nd
Choice

3rd
Choice

Other Than

Their Choice

SFRP

GSRP

70%

76%

7%

2%

3%

2%

20%

20%
■ =™

A-3

APPENDIX B - SRP EVALUATION RESPONSES

1. OVERVIEW

Evaluations were completed and returned to RDL by four groups at the completion of the SRP.
The number of respondents in each group is shown below.

Table B-l. Total SRP Evaluations Received

Evaluation Group Responses |

SFRP & GSRPs 275

HSAPs 116

USAF Laboratory Focal Points 109

USAF Laboratory HSAP Mentors 54

All groups indicate near-unanimous enthusiasm for the SRP experience.

Typical comments from 1994 SRP associates are:

"[The SRP was an] excellent opportunity to work in state-of-the-art facility with top-notch
people."

"[The SRP experience] enabled exposure to interesting scientific application problems;
enhancement of knowledge and insight into 'real-world' problems."

"[The SRP] was a great opportunity for resourceful and independent faculty [members]
from small colleges to obtain research credentials."

"The laboratory personnel I worked with are tremendous, both personally and scientifically.
I cannot emphasize how wonderful they are."

"The one-on-one relationship with my mentor and the hands on research experience
improved [my] understanding of physics in addition to improving my library research skills.
Very valuable for [both] college and career!"

B-l

Typical comments from laboratory focal points and mentors are:

"This program [AFOSR - SFRP] has been a 'God Send' for us. Ties established with
summer faculty have proven invaluable."

"Program was excellent from our perspective. So much was accomplished that new options
became viable"

"This program managed to get around most of the red tape and 'BS' associated with most
Air Force programs. Good Job!"

"Great program for high school students to be introduced to the research environment.
Highly educational for others [at laboratory]."

"This is an excellent program to introduce students to technology and give them a feel for
[science/engineering] career fields. I view any return benefit to the government to be 'icing
on the cake' and have usually benefitted."

The summarized recommendations for program improvement from both associates and laboratory
personnel are listed below (Note: basically the same as in previous years.)

A. Better preparation on the labs' part prior to associates' arrival (i.e., office space,
computer assets, clearly defined scope of work).

B. Laboratory sponsor seminar presentations of work conducted by associates, and/or
organized social functions for associates to collectively meet and share SRP
experiences.

C. Laboratory focal points collectively suggest more AFOSR allocated associate
positions, so that more people may share in the experience.

D. Associates collectively suggest higher stipends for SRP associates.

E. Both HSAP Air Force laboratory mentors and associates would like the summer
tour extended from the current 8 weeks to either 10 or 11 weeks; the groups state it
takes 4-6 weeks just to get high school students up-to-speed on what's going on at
laboratory. (Note: this same arguement was used to raise the faculty and graduate
student participation time a few years ago.)

B-2

2. 1994 USAF LABORATORY FOCAL POINT (LFP) EVALUATION RESPONSES

The summarized results listed below are from the 109 LFP evaluations received.

1. LFP evaluations received and associate preferences:

Table B-2. Air Force LFP Evaluation Responses (By Type)

How Many Associates Would You Prefer To Get1 » (% Response)

Lab Evals 0
SFRP

1 2 3+
GSRP (w/Univ Professor)
0 12 3+

GSRP (w/o Univ Professor)
0 12 3+

Recv'd
AEDC
AL
FJSRL
PL
RL
WHMC
WL

10
44
3
14
3
1

46

30
34
33
28
33
0
15

50 0
50 6
33 33
43 28
67 0
0 100

61 24

20
9
0
0
0
0
0

50 40 0 10
54 34 12 0
67 33 0 0
57 21 21 0
67 0 33 0
0 100 0 0
56 30 13 0

40 60 0
56 31 12
33 67 0
71 28 0
100 0 0
0 100 0
76 17 6

0
0
0
0
0
0
0

Total 121 25% 43% 27% 4% 50% 37% 11% 1% 54% 43% 3% 0%

LFP Evaluation Summary. The summarized repsonses, by laboratory, are listed on the following
page. LFPs were asked to rate the following questions on a scale from 1 (below average) to 5
(above average).

2. LFPs involved in SRP associate application evaluation process:
a. Time available for evaluation of applications:
b. Adequacy of applications for selection process:

3. Value of orientation trips:
4. Length of research tour:
5 a. Benefits of associate's work to laboratory:

b. Benefits of associate's work to Air Force:
6. a. Enhancement of research qualifications for LFP and staff:

b. Enhancement of research qualifications for SFRP associate:
c. Enhancement of research qualifications for GSRP associate:

7. a. Enhancement of knowledge for LFP and staff:
b. Enhancement of knowledge for SFRP associate:
c. Enhancement of knowledge for GSRP associate:

8. Value of Air Force and university links:
9. Potential for future collaboration:
10. a. Your working relationship with SFRP:

b. Your working relationship with GSRP:
11. Expenditure of your time worthwhile:

(Continued on next page)

B-3

12. Quality of program literature for associate:
13. a. Quality of RDL's communications with you:

b. Quality of RDL's communications with associates:
14. Overall assessment of SRP:

laboratory
AEDC AL FJSRL PL RL WHMC WL

Evals Recv'd 10 32 3 14 3 1 46
Question #

2 90% 62 % 100% 64% 100% 100% 83 %
2a 3.5 3.5 4.7 4.4 4.0 4.0 3.7
2b 4.0 3.8 4.0 4.3 4.3 4.0 3.9
3 4.2 3.6 4.3 3.8 4.7 4.0 4.0
4 3.8 3.9 4.0 4.2 4.3 NO ENTRY 4.0

5a 4.1 4.4 4.7 4.9 4.3 3.0 4.6
5b 4.0 4.2 4.7 4.7 4.3 3.0 4.5
6a 3.6 4.1 3.7 4.5 4.3 3.0 4.1
6b 3.6 4.0 4.0 4.4 4.7 3.0 4.2
6c 3.3 4.2 4.0 4.5 4.5 3.0 4.2
7a 3.9 4.3 4.0 4.6 4.0 3.0 4.2
7b 4.1 4.3 4.3 4.6 4.7 3.0 4.3
7c 3.3 4.1 4.5 4.5 4.5 5.0 4.3
8 4.2 4.3 5.0 4.9 4.3 5.0 4.7
9 3.8 4.1 4.7 5.0 4.7 5.0 4.6

10a 4.6 4.5 5.0 4.9 4.7 5.0 4.7
10b 4.3 4.2 5.0 4.3 5.0 5.0 4.5
11 4.1 4.5 4.3 4.9 4.7 4.0 4.4
12 4.1 3.9 4.0 4.4 4.7 3.0 4.1

13a 3.8 2.9 4.0 4.0 4.7 3.0 3.6
13b 3.8 2.9 4.0 4.3 4.7 3.0 3.8
14 4.5 4.4 5.0 4.9 4.7 4.0 4.5

B-4

3. 1994 SFRP & GSRP EVALUATION RESPONSES

The summarized results listed below are from the 275 SFRP/GSRP evaluations received.

Associates were asked to rate the following questions on a scale from
1 (below average) to 5 (above average)

1. The match between the laboratories research and your field: 4.6

2. Your working relationship with your LFP: 4-8

3. Enhancement of your academic qualifications: 4.4

4. Enhancement of your research qualifications: 4.5

5. Lab readiness for you: LFP, task, plan: 4-3

6. Lab readiness for you: equipment, supplies, facilities: 4.1

7. Lab resources: 4<3

8. Lab research and administrative support: 4-5

9. Adequacy of brochure and associate handbook: 4.3

10. RDL communications with you:

11. Overall payment procedures:

12. Overall assessment of the SRP: 4-7

13. a. Would you apply again? Yes: 85%

b. Will you continue this or related research? Yes: 95%

14. Was length of your tour satisfactory? Yes: 86%

15. Percentage of associates who engaged in:

a. Seminar presentation: 52%
b. Technical meetings: 32^
c. Social functions: 03%
d. Other 01%

B-5

4.3

3.8

16. Percentage of associates who experienced difficulties in:

a. Finding housing: 12%
b. Check Cashing: 03%

17. Where did you stay during your SRP tour?

a. At Home: 20%
b. With Friend: 06%
c. On Local Economy: 47%
d. Base Quarters: 10%

THIS SECTION FACULTY ONLY:

18. Were graduate students working with you? Yes: 23%

19. Would you bring graduate students next year? Yes: 56%

20. Value of orientation visit:

Essential: 29%
Convenient: 20%
Not Worth Cost: 01 %
Not Used: 34%

THIS SECTION GRADUATE STUDENTS ONLY:

21. Who did you work with:

University Professor: 1 g %
Laboratory Scientist: 54%

B-6

4. 1994 USAF LABORATORY HSAP MENTOR EVALUATION RESPONSES

The summarized results listed below are from the 54 mentor evaluations received.

1. Mentor apprentice preferences:

Table B-3. Air Force Mentor Responses
How Many Apprentices Would

You Prefer To Gel?
HSAP Apprentices Preferred

Laboratory #Evals
Recv'd

0 12 3+

AEDC 6 0 100 0 0
AL 17 29 47 6 18
PL 9 22 78 0 0
RL 4 25 75 0 0
WL 18 22 55 17 6
Total 54 20% 71% 5% 5%

Mentors were asked to rate the following questions on a scale from
1 (below average) to 5 (above average)

2. Mentors involved in SRP apprentice application evaluation process:
a. Time available for evaluation of applications:
b. Adequacy of applications for selection process:

3. Laboratory's preparation for apprentice:
4. Mentor's preparation for apprentice:
5. Length of research tour:
6. Benefits of apprentice's work to U.S. Air force:
7. Enhancement of academic qualifications for apprentice:
8. Enhancement of research skills for apprentice:
9. Value of U.S. Air Force/high school links:
10. Mentor's working relationship with apprentice:
11. Expenditure of mentor's time worthwhile:
12. Quality of program literature for apprentice:
13. a. Quality of RDL's communications with mentors:

b. Quality of RDL's communication with apprentices:
14. Overall assessment of SRP:

B-7

AEDC AL PL RL WL
Evals Recv'd 6 17 9 4 18

Question #
2 100% 76% 56% 75 % 61 %
2a 4.2 4.0 3.1 3.7 3.5
2b 4.0 4.5 4.0 4.0 3.8
3 4.3 3.8 3.9 3.8 3.8
4 4.5 3.7 3.4 4.2 3.9
5 3.5 4.1 3.1 3.7 3.6
6 4.3 3.9 4.0 4.0 4.2
7 4.0 4.4 4.3 4.2 3.9
8 4.7 4.4 4.4 4.2 4.0
9 4.7 4.2 3.7 4.5 4.0
10 4.7 4.5 4.4 4.5 4.2
11 4.8 4.3 4.0 4.5 4.1
12 4.2 4.1 4.1 4.8 3.4
13a 3.5 3.9 3.7 4.0 3.1
13b 4.0 4.1 3.4 4.0 3.5
14 4.3 4.5 3.8 4.5 4.1

B-8

5. 1994 HSAP EVALUATION RESPONSES

The summarized results listed below are from the 116 HSAP evaluations received.

HSAP apprentices were asked to rate the following questions on a scale from
1 (below average) to 5 (above average)

1. Match of lab research to you interest: 3.9

2. Apprentices working relationship with their mentor and other lab scientists: 4.6

3. Enhancement of your academic qualifications: 4.4

4. Enhancement of your research qualifications: 4.1

5. Lab readiness for you: mentor, task, work plan 3.7

6. Lab readiness for you: equipment supplies facilities 4.3

7. Lab resources: availability 4.3

8. Lab research and a<lministrative support: 4.4

9. Adequacy of RDL's apprentice handbook and administrative materials: 4.0

10. Responsiveness of RDL's communications: 3.5

11. Overall payment procedures: 3.3

12. Overall assessment of SRP value to you: 4.5

13. Would you apply again next year? Yes: 88%

14. Was length of SRP tour satisfactory? Yes: 78 %

15. Percentages of apprentices who engaged in:

a. Seminar presentation: 48%
b. Technical meetings: 23%
c. Social functions: 18%

B-9

A COMPARISON BETWEEN RELATIONAL DATABASES
AND OBJECT-ORIENTED DATABASES

Thomas J. Angell

Camden High School
Oswego St.

Camden, NY 13316

Final Report for:
High School Apprentice Program

Rome Laboratory

Sponsored by:
Air Force Office of Scientific Research

Boiling Air Force Base, DC

and

Rome Laboratory at
Griffiss Air Force Base

August 1994

1-1

Table of Contents

Title page pg. 1

Abstract pg. 3

An Overview of Database
and Database Management Systems pg. 4

Differences Between Relational
and Object-Oriented Databases pg. 8

Conclusions pg. 12

References pg. 13

1-2

Abstract

This paper discusses several attributes common among database and

database management systems. It also compares two types of database

management systems, Relational and Object-Oriented. A database can

provide users with a better way of finding or updating data, but it must

correspond to the real world and be user friendly in order to readily

accomplish this task.

1-3

AN OVERVIEW OF DATABASES
AND DATABASE MANAGEMENT SYSTEMS

A database is a collection of related data. It is designed and built

for a specific purpose, intended for a specific group of users (although) it

should be considered that anyone could possibly be using it. It represents

or models some aspect of the real world. A database management system

(DBMS) is a collection of programs that allows users to create, maintain,

and access a database.

What is to be expected of a DBMS? A DBMS must correspond to

the real world in scale, magnitude, and complexity-but allow users to easily

enter and retrieve information. The users have the most important role

because they are the ones that will be actually using the DBMS. Their

primary job is not to program the database but to retrieve information that

is scattered throughout the organization to answer questions or make

decisions. The user or potential user of a DBMS need not have a firm

grasp of DBMSs concepts. The database should be set up so that the user

can find the data he is looking for without having to know how to program

the database. This makes for a more user friendly DBMS. The user needs

to maintain the database by modifying or updating it. Data can be added,

deleted, or changed. The user, directly or indirectly via application

programs, operates with the DBMS in three modes, definition, access, and

maintenance. The user defines the database by specifying the format of the

data and the relationship among the data. The user accesses data by

requesting the DBMS to retrieve portions of the database. The user must

maintain the DBMS by modifying or updating the system with new data.

1-4

The DBMS needs to be able to change the data as the real world changes.

The data should need only to be changed once without affecting the

application programs because the data and programs need to be

independent of each other. A DBMS must support a data structure that

corresponds to the real world. The data structure must have entities and

data items. Database technology allows an organization's data to be

processed as an integrated whole. Integration of data offers several

important advantages. Data is compatible with information processing

systems so that new systems need not be created for "one of a kind"

requests. In effect, more information can be obtained from existing data

because when data is integrated, more derivations are possible.

In pre-database systems, each user had their own file on which to

enter and update data. Since information changes, data needs to updated.

If different departments use "copies" or "duplicates" of the of the same

data, then some departments might get updated and others may not. The

most serious problem of data duplication is that it can lead to a lack of data

integrity meaning data items representing some part of the real world then

disagree with one another. A DBMS should eliminate data duplication by

having the system purge out dated data to make sure that data integrity is

not compromised. This saves file space and can reduce processing

requirements but must support access to data by multiple users

simultaneously since more departments will be using the database. Because

data is shared there is a need for a data architecture that works for all

users. Since data is shared, it does not belong to any one department and

there is an increased need for control. When data is centralized in a

database, one administrator can specialize in the maintenance of data. A

1-5

DBMS provides an enterprise for centralized control of its operational data

and improves communication and integration between departments. A

DBMS can lead to better data management and quicker response time

between departments.

The DBMS needs to be able to protect itself from unauthorized

users. The first level of security is physical access to the system and the

next level is passwords on the system and in the program. Also the data

can be written in encryption. Passwords are a common method that can be

used to protect a database. They may be used for the entire database or any

portion of the system. Passwords can also be used to secure types of

functional activity such as a read password and a write password. Data

encryption is another common technique of database security. Data is

stored and transmitted in coded format. It can be very simple to program,

for example, the binary representation of data can be modified by squaring

it or adding a constant to it. Characters can be shifted or one alphabet can

replace another. The coding scheme must be kept a secret and be changed

periodically. Programs that do the encoding and decoding must be kept out

of reach of would-be infiltrators by the use of passwords. Unfortunately,

any security measure, no matter how complex, can be circumvented in

some way. The best that can be done is to hassle the would-be infiltrator so

that extensive risk and effort would be required to perform unauthorized

processing.

Not only does the DBMS have to protect itself from unauthorized

users but also authorized users. To protect data from corruption by

authorized users the DBMS must provide integrity. If data is changed in

one area of the database then that information is sent throughout the entire

1-6

database. Data definition is crucial to a DBMS so all users properly

understand the data represented. Support for integrity requires support for

semantic integrity constraints (rules). The data entered into the DBMS

must conform to the constraints about format, use, and meaning. For

example, a social security number must have a certain number of digits.

Also, back-up and recovery allows users to roll-back and correct or

eliminate erroneous data. The database should be downloaded onto a back-

up so that it can be recovered from a variety of failures ranging from a

program error to a systems crash.

DBMSs do provide many advantages, but there are also

disadvantages. Although the number of updates are reduced, errors in that

data are much more painful and harder to detect. Since DBMS software is

complex and consumes resources, there is a need for skilled design,

administration, and management personnel. Training for programmers

and users may be necessary. Additional hardware might be needed because

a DBMS will make an overloaded computer more overloaded and may be

incompatible with other DBMS's. A DBMS will not solve coordination

among users-that is a people problem. A DBMS can enforce a policy, but

not create it. A database may be able to detect errors in data but only users

can change them. A DBMS has an increased vulnerability to failure since a

failure in one component of an integrated system can stop an entire

database.

Database processing seems to meet a critical need; it can be a better

way to provide information to users. Data is just recorded facts and

figures; information is knowledge derived from data. By using a database,

users can obtain information quicker and more completely than those

without access. 1-7

DIFFERENCES BETWEEN RELATIONAL
AND OBJECT-ORIENTED DATABASES

Object-Oriented databases management systems (OOBDMSs) and

Relational databases management systems (RDBMSs) have fundamentally,

the same goals. As RDBMSs grew and became more powerful, it became

increasingly difficult to ask for one single piece of data. This brought

around the use of OODBMSs where an object, familiar to a group of users,

is called up, not a specific piece of data.

A major difference between the two database management systems is

their primary goals. In a RDBMSs, the primary goal is data independence.

This means that the data representation on the computer is independent of

the interface to the application. The most significant advantage of this is

that the physical representation can be modified without affecting

applications. The database can be completely reorganized at the physical

level without recompiling programs or schema. Performance features such

as indexes can be added or removed dynamically, tables can be partitioned

across disk drives or compressed to reclaim unused space, and so on. None

of this affects the applications, so they are maintained more easily. In

RDBMSs each relation (table) is separate. Join commands relate the data

that is in separate relations. An international standard language that is used

to express the relational model is SLQ (standard query language). It is a

declarative, nonprocedural language that expresses the kind of data desired,

not how to get it. This allows the database system to choose from

alternative mechanisms and to obtain the data from physical realization of

the database. The database management system can dynamically optimize

1-8

the way queries are executed, freeing the application programmer from

this task. When relational data is designed, the process of normalization

can be applied. Fully normalizing a data model produces a database in

which redundancy has been eliminated. This has two advantages. First, it

removes the possibility that portions of the database are out of sync due to

redundant storage. Second, it usually minimizes the amount of data stored,

reducing the overall size of the database and saving disk space. The

relational model has three basic types of data: relation, tuple (row), and the

attribute (column). The relational model also has three operations: select,

join, and project. The relational model is easier to learn and use because

most people are already familiar with the basic concepts, since they have

already worked with tables, columns, and rows.

In OODBMSs, there primary goal is encapsulation. After traditional

databases had been in use for some time, a need arose to associate certain

procedures with the data and activate them when the data was accessed.

Such procedures were used to help control the integrity of the data and its

security. Sometimes, a value was computed rather than stored-a procedure

referred to as putting "intelligence" in the database. OODBMSs take the

idea of intelligent databases to its logical conclusion. No data is accessed

except with the methods stored in the database. The data of all objects is

therefore encapsulated. This means that the data can only be employed

with the methods that are part of a class. Object-Oriented classes are

intended to be reusable. Therefore, another goal of OODBMS is to achieve

maximum reusability. Because of this, the class should be bug-free and

should only be modified if absolutely necessary. Traditional database

technology is designed to support processes that are subject to endless

1-9

modification. Therefore, data independence is necessary. The OODBMS

supports classes, some of which never change. Change comes from

interlinking classes in diverse ways. The data structures in the OODBMS

should be tightly optimized to support the class in which they are

encapsulated. The data for one object can be interlinked and stored

together with another object, so that they can be accessed from one position

of the access mechanism.

In OODBMSs, the data is active rather than passive. Requests cause

objects, which are active, to execute their methods. Objects are composed

of objects that in turn are composed of objects and so on. Because of this,

the data structures for one object can become highly complex. Certain

limited operations may be automatically triggered when data is used in a

RDBMSs, but for all intensive purposes, data is passive. OODBMSs give

higher performance than RDBMSs for applications with complex data.

OODBMSs outperform RDBMSs for applications with lots of data

connectivity. They allow objects to refer directly to one another using soft

pointers-making OODBMSs much faster in getting from object A to object

B. OODBMSs make physical clustering more effective. Most database

systems allow the developer to place related structures close to each other

in disk storage. This dramatically reduces retrieval time for the related

data, since all data is read with one disk read, instead of several. However,

in a RDBMS, implementation objects get translated into tabular

representations and typically get spread out over multiple tables. Thus, in

a RDBMS these related rows must be clustered together, so that the whole

object can be retrieved with one disk read. In an OODBMS, this is

automatic. Furthermore, clustering related objects, such as all subparts of

1-10

an assembly, can dramatically affect the overall performance of an

application. This is relatively straightforward in an OODBMS, since this

represents the first level of clustering.

In contrast, physical clustering is typically impossible in an RDBMS,

because it requires a second level of clustering-one level to cluster the rows

representing individual objects and a second for the groups of rows that

represent related objects. OODBMSs use diverse storage structures.

Relations are one of the many data structures that can be used along with

BLOBs (binary large objects). BLOBs are used for sound, images, video,

and large unstructured bit streams. In RDBMSs, data that cannot be easily

expressed in tabular form is difficult to store and access efficiently. For

example, multimedia applications require the storage of large data streams

representing digitized video and audio data. CAD (Computer Assisted

Design) applications often require the storage of large numbers of very

small objects, such as the point defining the geometry of a mechanical part.

Neither is well-suited to representation in a table. Therefore, RDBMSs

cannot provide efficient storage management for these application areas.

The storage model for OODBMSs is unlimited, since the systems is, by

nature, extensible. OODBMSs can provide different storage mechanisms

for different kinds of data. As a result, they have proven very effective in

supporting both multimedia and CAD applications.

1-11

Conclusions

OODBs represent the next step in database evolution, supporting

Object-Oriented analysis, design, and programming. They give much

better machine performance than RDBs when working with highly

complex data structures. However, OODBs will coexist with RDBs because

in many situations data independence is more important and efficient than

encapsulation. Also, many corporations are locked into RDB systems and

would not be cost efficient to switch to an OODB. Military systems have

likewise grown over time. Current Theater Air Operations Centers for

large fixed theaters receive information from many sources in the form of

text messages, image maps, and voice reports. The Oracle RDBMS used by

the plans and operations personnel and the Sybase RDBMS used by the

intelligence personnel have been maximized to handle a limited subset of

the operational requirements. These RDBMS vendors are upgrading their

commercial products to provide an Object-Oriented capability to meet the

military operational needs.

In the future, OODBs will open up many new horizons and create

new capabilities on the Information Superhighway.

1-12

References

Abnous, R., and Khoshafian, S. (1990) "Object Orientation -
Concepts, Languages, Databases, User Interfaces." John Wiley and Sons,
Inc.

Bowman, C. "Database Programing and Design." Why We Need
Object - Oriented Systems , Feb. 1994, Pp. 27-30.

Codd, E. (1990) "The Relational Model for Database Management:
Version 2." Addison - Wesley Publishing Comp.

Jardine, D. (1977) "The ANSI/SPARC DBMS Model." North-
Holland Publishing Comp.

Kroenke, D. (1978) "Database - A Professional's Primer." Science
Research Associates. Inc.

Landwelar, C. (1988) "Database Security: Status and Prospects."
Elsevier Science Publishers B.V.

Learning Tree International, (1991) Relational Databases: Designs,
Tools, and Techniques. Learning Tree International, Los Angeles.

Lochovsky, F., and Tsichritzis, D. (1977) "Database Management
Systems." Academic Press.

Martin, J. (1993) Principles of Object - Oriented Analysis and
Design." PTR Prentice Hall.

1-13

C PROGRAMMING FOR DIGITAL ANALYSIS,
AND THE UNIX OPERATING SYSTEM

Jonathan C. Bakert

Sauquoit Valley High School
Sauquoit. NY 13456

Final Report for:
High School Apprentice Program

Rome Laboratory

Sponsored by:
Air Force of Scientific Research

Boiling Air Force Base, DC

and

Rome Laboratory

August 1994

2-1

C PROGRAMMING FOR DIGITAL ANALYSIS,
AND THE UNIX OPERATING SYSTEM

Jonathan C. Bakert
Sauquoit High School

Abstract

In much more depth, the C programming language was studied and was implemented to compose various tools

for the ATTI (Analog Test Tool Integration) package under Xwindows. Tools such as a sliding FFT algorithm with a

movable 'window' were written along with the C source code for a signal to noise calculator. Also, code to read and write

the header file of the Tektronix DAS 9200 (Digital Analysis System) was used to store critical information during analysis.

Along with these functions, smaller, more versatile functions were written as part of a larger library to make repetitive

tasks, such as the copying of matrices or the summation and squaring of an array, easier. The Unix operating system was

also studied and used with more proficiency.

2-2

C PROGRAMMING FOR DIGITAL ANALYSIS,
AND THE UNIX OPERATING SYSTEM

Jonathan C. Bakert

Introduction

The C programming language has always been an incredibly useful tool for many types of scientific research. In

this case, the language was implemented to write various pieces of code for a digital analysis project. Several routines

were written for the ATTI (Analog Test Tool Integration) package, such as code to extract header information from the

DAS 9200 (Digital Analysis System) for further analysis by other external functions. Also, code was developed to produce

data using a 'sliding window' FFT. The portion of data read in by this function would gradually be changed by a user

definable setting until the maximum amount of 'windows' had been read in. An FFT would then be preformed and the

results would be graphed by a graphing function internal to the ATTI. Signal to noise analysis was also preformed by

determining the sum of the squares of the entire signal and then placing it over the sum of the squares of the noise

generated.

Furthermore, functions were written to make repetitive tasks easier. A function to calculate the sum of the squares

of an array of double integers was written along with a useful function to copy the contents of an array to a destination

array. Lastly, the UMX operating system was studied and the result was a greater proficiency with UNIX commands.

Methodology

When first writing the code to extract the header file from the DAS, the file format, in terms of C, had to be

identified. Since code on disk could not be found with all the relevant information on it, the DAS header had to be copied

verbatim from a user manual which had a detailed description of its layout and format. Also, the user's manual contained

information on the offset between the data structures, which was mistakenly overlooked at first. With this offset and the

users manual diagrams, the data structures could be successfully read into memory. With this information in memory, the

user and the programmer can utilize information from the data file such as the date it was created, its file type, and the

amount of headers which are contained in the file. Also, the frequency can be gathered from analysis of the header file.

2-3

However, if the frequency determined from the header file is ever zero, this represents an external signal source, and thus

the user of the ATTI package must input it. Along with reading in the appropriate DAS header, our own header had to be

supplied to contain data which we needed to access independently. This made our final header file a combination of both

our own data and the original DAS generated header.

Below is an example of the code used to read in the information of the DAS header:

/* readheader.c */

/* By Jonathan Bakert */

/* as Part of the ATTI */

/* Rome Labs/ERDA */

/* July 20, 1994 */

/* yersion 1.1 */

/* Modified Header Format:

* MEM_HDR

* (Offset of N bytes)

* DATA_SET_HDR

* (Offset of N bytes)

* DATA_SET_HDR

* (Offset of N bytes)

* AOX_DATA

* DSER_HEADER (Defined by ATTI)

*/

#include <stdio.h>

♦include <stdlib.h>
»include "fileform3.h"

♦include "atti.h"

FILE *Headerfile, *foper.();

int readheader(char 'Headfilename, user_struct_p *user_header, mem hdr p 'memory hdr, data set hdr p
*data_set, aux_data_p *auxiliary_data) - - _ _ _ _p

{

if((Headerfile = fopen(Headfilename, "r")) !=NÜLL) {

if <<*user_header) == NULL) { /* then malloc all structs */

(*memory_hdr) = malloc(sizeof(struct mem_hdr));

(*data_set) = malloc(sizeof(struct data_set_hdr));

(*auxiliary_data) = malloc(sizeof(struct aux_data));

<*user_header) = (user_struct_p) malloc(sizeof(struct user_struct));
}

fread((*memory_hdr), sizeof(struct mem_hdr), 1, Headerfile);

fseek(Headerfile, (*memory_hdr)->mh_set_hdr.off, 0);

fread((*data_set), sizeof(struct data_set_hdr), 1, Headerfile);

fseek(Headerfile, (*memory_hdr)->mh_aux_data.off, 0);

fread((*auxiliary_data), sizeof(struct aux_data), 1, Headerfile);

2-4

fread((*user_header), sizeof(struct user_struct), 1, Headerfile);

if (fclose(Headerfile) == EOF)

return(O); /* error closing file */

else

return(l); /* closing is ok */

else {

return(0);

With the readheaderO function, the memory for the structures was originally allocated while in the function.

Since the ATTI handled the memory allocation job, this function had to be passed pointers to the available memory

locations.

In C, various functions help in the manipulation and the random access of data. In this instance, the f seek ()

function was used to 'cursor' through the file stream and thus move 'offset' distance from the beginning of the file. This

compensated for the offset between each DAS data structure.

For example, though the diagram in the users manual showed this format for the header:

HEADER 1
HEADER2
HEADER 3
DATA

[[END OF FILE]

... a more correct representation would be:

HEADER 1
(Offset of N bytes between next header)
HEADER2
(Offset of X bytes between next header)
HEADER 3
(Offset of Y bytes between next header)
DATA

[END OF FILE]

Along the same lines was a function to write out the header information which is almost exactly like the

2-5

READHEADER.C function except that it implements fwrite () instead of f read (). Once an f seek () was pre-

formed in the WRITEHEADER.C function, an f write () would be executed. Fwrite () turned out to be the easiest

function in this case, as it could read in the entire contents of a structure with only a single command. The only thing

necessary for the programmer was to input a pointer to the data, the number of bytes you wanted to read in, the number of

times you wanted to read those bytes, and the file stream.

After the code to write the header had been completed, a 'sliding window' FFT algorithm was worked on. This

code read in a certain number of data points which made up the 'window'. The window would then be moved a certain

number of bytes over and the data would be read in once again, hence the term 'sliding'. All data acquired this way would

be averaged into a single array which would them be multiplied by a 'window' (not to be confused with the sliding win-

dow) to eliminate errors when testing. An FFT would them be run on this data and the output would generally be more

precise since some of the noise was averaged out with the window passes.

An example of the Sliding FFT code is:

/*
By Jonathan Bakert 08 Aug 94

for use in the ATTI project

Returns 0 on error.

Set tabstop=3

*/

♦include <stdio.h>
♦include <math.h>
♦include <complex.h>
♦include <matrix.h>
♦include "fileform3.h"
♦include "atti.h"

extern user_struct_p user_header;

extern mem_hdr_p memory_hdr;

extern data_set_hdr_p data_set;

extern aux_data_p auxiliary_data;

FILE *fout, *fopen(); /* input file pointer */

int sfft(atti_file_p instruct, atti_gdata_p outdata, int slide_dist, int window_size)

int l, current_pos = 0, times_looped = 0;

unsigned int num_points;

double data, mag, win, maxmag, multiplier;

double noise[1];

double *time, *temp_freq, *freq, *magfreq;

fprintf(stderr, "In SFFT now \n");

2-6

if ((instruct->ler.==0) I! ((fout = fopen ("analysis_data", "w")) == NULL))

{

return(0);

}

num_points = mstruct->len;

/* IF PERIOD IS 0, USE USER DEFINED FREQ */

if (data_set->dsh_hdr.dshh_period == 0)

multiplier = ((user_header->Fs)/window_size) ;

else

multiplier = ((1.0/(data_set->dsh_hdr.dshh_penod))/window_size) ;

fprintf(stderr,"Multiplier = %f\n",multiplier);

outdata->len = window_size/2;

outdata->data = (double *) malloc (sizeof (double) * outdata->ler.) ;

for(; ;)

{
for (i=currer.-_pos; i < wmdow_size + current_pos; itt)

{

data= (double) mstruct->data [i] ;
win = 0 - cos (((double)l / ((double) (window_size - 1))) * 2 * M_PI) + 1;
time[i] = win * data;
}

}

realfft(time, window_size, temp_freq);
MADD(freq, freq, temp_freq, wmdow_size) ;

times_looped++;

if(current_pos + slide_dist + window_size > num_points)

break;

else

(
current_pos += slide_dist;

}

}

[Portions of Code Removed]

A problem with the calculation of the slide distance occurred when the current position was only being set equal

to the slide distance. This would create an incorrect next position, and, even worse, would stick the function into an infinite

loop. With the quick addition of a plus (+) sign before the equal, this problem was solved.

Also, in the SFFT code, the matrix library of functions was used. These functions were created by the Lab before

my apprenticeship. These proved useful in a few occasions. For example, the function MADD would add the contents of

array A and array B and place it in array C. The parameter which you needed to pass also included the number of elements

which were in the source array. MDIV worked along the same lines as MADD, except that it divided array B by array C,

2-7

and placed the value in array A. The number of elements in the array also needed to be passed. These elements were

represented by the variable S.

The SFFT code would take data such as the sine wave below:

Sine Wave

i—H

co

A/D Output Value (decimal)

... and then the average of the consecutive FFT's. Also, you'll notice that that the sine wave above ends at an irregular

point. To correct for this problem, each point had to multiplied by a set 'window'. This would decrease the amount of

noise calculated in the SFFT dramatically.

An example of the data an FFT would send out it

3
3

FFT

<

Frequency (relative to primary)

2-8

Next, a signal to noise algorithm was made. This function would be given N number of points. The sum of the

squares of these points would then be found and placed over the sum of the squares of the noise generated (the noise being

all data not X away from the real frequency.) As a precaution, this function took the frequency as a parameter, but is smart

enough to find the real frequency should there be some error, or if it turns out that the user defined frequency is not the

most frequent This function also supports a parameter which would tell the function how many data points to erase on

either side of the calculated frequency. For example, if relatively few points were used, the user would want a small

number of points erased. If there were a large amount of points, the user would want to 0 out a larger number of points.

What was left would be mostly noise.

Lastly, smaller functions were written to copy the contents of an array of doubles to another, and to find the sum

of the squares of an array. The sum of the squares of an array was very useful in the signal to noise function which

implemented it a few times. This made code look more professional without being cluttered by repetitive statements.

An example of the sum of the squares function is:

/* SSQR (Sum of Squares) */

/* By Jonathan Bakert */

/* Usage: /*

/* SSQR(Data Array of Doubles, Number of Elements in Array);

/* Returns the Sum of the Squares (A Double)

♦include <math.h>
♦include <stdlib.h>
♦include <stdio.h>

double SSQRfdouble *data, unsigned int num_elements);

double SSQRfdouble *data, unsigned int num_elerr,ents)

{

unsigned int counter;

double sum_of_squares = 0;

for(counter = 0; counter < num_elements; counter++)

{

sum_of_squares += data[counter] * data[counter];

}

2-9

return(sum_of_squares);
}

An example of the matrix copy function is:

/* MCPY by Jonathan Bakert */

/* Copies all elements from B array into A array */

/* Usage:
*

* MCPYfdest array, source array, # of elements m sour

*/

void MCPY(double *a, double *b, unsigned mt s);

void MCPY (double *a, double *b, unsigned lr.t s

{

unsigned int counter;

double *a_ptr=a,

*b_ptr=b;

int element=0;

while (element++ < s)

*a_ptr++ = *b_ptr++;

Though both of these functions are very simple, they turned out to be very useful in a few different pieces of code.

They may also be added to a current library of functions whose purpose is centered around the manipulation of arrays.

In the course of writing these functions, a lot of very useful programming techniques were learned such as passing

a variable by 'reference'. When a variable is passed by reference, its address is passed. This allows other external functions

to modify data which normally wouldn't be available. This also enforces the idea of modular programming. By having

each function do a specific thing, and thereby reducing global data, a new style can be developed that is much easier to

understand and much more powerful than languages which tend to produce confusing, entangled code, such as BASIC.

The use of type casting was also learned. This allows the program to successfully modify a variable. For exam-

ple, an integer and a double integer may be devided by typecasting the integer to a double.

The usefulness of the mallocO function and the calloc () function was also learned. Since C doesn't

necessarily allocate memory space for all its variables or arrays, these functions have to be called to supply a suitable

memory space to place the newly acquired values. If these functions are not used prior to declaring a variable or array, it

2-10

can have tragic results, such as overwriting highly volatile places in memory. It can also be equally disastrous if you fail

to allocate the right amount of memory.

Also, the technique of using the C typedef 'reserved word' when declaring structures also proved very useful.

Instead of declaring a structure like this:

struct whatever

{
int whatever[20] ;
double hotdogflO];
etc...
} *rule_world;

... it can be shown as less confusing if a structure is declared like this:

typedef struct whatever

{
int whatever[20];
double hotdog[10];

etc...
} *rule_world_p;

... this way, the word 'whatever' may be used to make code clearer to understand. An instance of it still must be declared
by writing something like:

rule_world_p rule_world;

Now, the structure may be index by using:

rule_world->hotdog[]

All of these prograrnrning techniques were extremely valuable when writing function for the A'l'l'l project over

the summer. It's also true that cutting corners in certain areas may get you into trouble! As the old saying goes (or at least

sort of goes), for every complex problem there is an easy solution which is quick, neat, and wrong!

Results

When all the work was completed for the A'l'l'l and the program had been sufficiently debugged and tested, a

demo was given to a group of people from both Rome Lab, and other locations. To prepare for the presentation, a list of

viewgraphs was made with bulleted displays outlining the A'l'l'l and many of its characteristics. Things such as the history

of the A'l'l'l and the Aril's menu structure were discussed, along with an explanation on how it retrieves and manipulates

the data. Also, the future uses for the A'l'l'l package were discussed. A few commercial companies are interested in our

2-11

package.

Conclusion

Over the course of the summer, much was learned about C programming and its uses. New ways of writing code

and using functions were found, along with a helpful insight on how work in the technological field will be. Also, a few

examples were shown on how algorithms can be implemented in programs to make work both easier to understand, and

more effective. It was also apparent that writing your own functions, in the long run, can save you a lot of time when you

try a larger project later on. By writing small functions to take care of repetitive tasks, the size of code can be cut down

dramatically. The code will also be more appealing to look at, since things won't be as cluttered with one line function

calls.

The nature of data acquisition and analysis was also shown to me, and its methods described. It was also enjoy-

able to work in a team to get a project assembled. After every year that passes, I learn more and more about the C

programming language and different ways to use it. Since I plan on entering a software field, any type of language

(especially Q will be very beneficial to getting a job later on.

Also learned were a lot of things about the UNIX operating system. A whole new series of commands was found

that turned out to be very useful in transferring files to and from different directories. Getting useful software libraries was

also possible with the help of internet access. And as a bonus, having previous knowledge of the OpenWindows and UNIX

operating systems will give me a head start in college from those who are new to UNIX's style of commands . Hopefully,

I can continue learning the C language and eventually get some formal instruction so that I may learn to write larger, more

complex programs. Since software engineering rarely relies on one person to develop something, having prior experience

iwill make it much more easier to adapt in a job setting were many people contribute to a specific goal.

2-12

References

1. Peter Aitken& Bradley Jones. Teach Yourself C in 21 Days. SAMS Publishing, A Division of Prentice Hall Computer
Publishing, 1992.

2. SunOS User's Guide. Sun Microsystems, Inc., 1989.

3. SunOS: An Introduction. Sun Educational Services Revision A, 1989.

4. SunOS: Doing More. Sun Microsystems, Inc., 1989.

2-13

A STUDY IN THE DEVELOPMENT OF SPECIALIZED SOFTWARE
FOR PRI AND HISTOGRAM GENERATION IN SUPPORT OF

SIGINT RESEARCH AND DEVELOPMENT EFFORTS.

Craig M. Belusar

Oneida High School
501 Seneca St.

Oneida, NY 13421

Final Report for:
High School Apprentice Program

Rome Laboratory

Sponsored by:
Air Force Office of Scientific Research

Boiling Air Force Base, DC

August 1994

3-1

A STUDY IN THE DEVELOPMENT OF SPECIALIZED SOFTWARE
FOR PRI AND HISTOGRAM GENERATION IN SUPPORT OF

SIGINT RESEARCH AND DEVELOPMENT EFFORTS.

Craig M. Belusar
Oneida High School

Abstract

The goal of this project was to produce software that would generate

random generated Pulse Repetition Intervals (PRI's) and display a graphic representation

of the data. The solutions to this problem included learning about computer hardware

and software, radar signal propagation, and computer graphics. The result of this project

was a set of programs that generated random PRI's based on specified parameters with

the ability to display the PRI's in a histogram and / or pie chart display. Solving these

problems and writing the software increased my knowledge of computers and software

development to a great extent. It also proved beneficial to the ELINT Development

Facility (EDF) at Rome Laboratory as it aided in their research in signal intelligence.

3-2

Table of Contents

Introduction 3-4

Problem Description 3-4

Methodology 3-6

Results 3-8

Conclusion 3-9

Appendices
A. PASCAL program for PRI generation 3- 1

3-3

A STUDY IN THE DEVELOPMENT OF SPECIALIZED SOFTWARE
FOR PRI AND HISTOGRAM GENERATION IN SUPPORT OF

SIGINT RESEARCH AND DEVELOPMENT EFFORTS.

Craig M. Belusar

Introduction

The number of applications for computer software and hardware is unlimited.

Included among these applications are programs that aid signal and electronic intelligence

research efforts. The study of radar waves and their characteristics rely greatly on signal

processing techniques. Much of this processing is now done with specialized algorithms

and software.

Problem Discussion

The ELINT Development Facility (EDF) is currently developing algorithms that

analyze the Pulse Repetition Interval (PRI) of radar waves. For test purposes, it would be

desirable to have sets of PRI values with known characteristics to experiment with. The

problem I encountered was to develop software that would provide these PRI values. The

3-4

software consists of two programs; the first program was made to generate random PRI's,

and the second is used to display the data in a graphical manner as a histogram.

Generating random PRI's requires a basic understanding of radar wave forms. In

a radar wave form, a PRI is the duration of time from the start of one pulse to the start of

the next. It is the distance on figure 1 from point A to point B represented

mathematically as:

fx = radar crystal frequency;

N = countdown;

PRF=fx/N

PRI = N/fx = 1 / PRF

Point A Point B

 if
Radar
Pulse

|L-

Figure 1. Representation of a PRI in a Pulsed Radar Waveform.

A crystal is the component of a radar transmitter that controls the rate of pulse

transmission, known as the Pulse Repetition Frequency or PRF. The PRF, measured in

pulses per second (pps), is equal to the crystal frequency divided by the countdown. The

3-5

PRI is the inverse of the PRF. As such, the PRF is inversely proportional to the

countdown, N, and the PRI is proportional to N.

The program that was developed to solve this problem used both a specified

frequency and variance to produce a designated number of possible PRI's. The variance

is the amount in which the actual PRI can vary from the theoretical PRI. In the real

world, this variance can be caused by circumstances such as environmental factors or

aging equipment.

Software was also developed to take the PRI values generated previously and

display them as a histogram or pie chart. A histogram compares the number of bins to

the amount of items in each bin. The histogram algorithm takes the list of PRI's and

assigns each one a bin number. The bin numbers are represented by the x - axis, and the

y - axis is represented by the number of values in each bin. The bin size was calculated

by subtracting the upper value of the range by the lower and dividing by the number of

bins. This is the width of the bin, or delta. The bin number was then calculated by

subtracting the lower limit by the value and dividing by delta. The number of values in

each bin are calculated by counting the PRI's that fall within the range (delta) of a

particular bin.

delta = (upper - lower) / number of bins ;

bin number = value - lower / delta;

Methodology

3-6

Two programs had to be written to solve this problem. The first was written in

the programming language Pascal, the second was written in the C programming

language. To accomplish this, I needed to learn how to program in these languages as

well as develop algorithms to solve the problems. Both Pascal and C are block structured

programming languages that include independent structures, called functions in C and

procedures in Pascal, which link together to form a whole. By dividing the program into

these functional units, it becomes easier to develop and maintain the software over the

life-cycle of a project.

The PASCAL program which calculated the PRI's involved concepts that I had

previously been unaware of including radar theory, file input and output, random number

generation, and using specific functions in Pascal that were essential to the final program.

It also required the use of many programming language constructs such as loops, data

types, and arrays. This expanded my programming knowledge and prepared me for the

challenge of learning the C language and developing software in C.

The second program was

used to generate a histogram

display (see figure 2) of the PRI's

created with the PASCAL program,

and was much larger and more

complicated than the previous

program.

Figure 2. Example Output from Histogram Program.

3-7

This program read input from a file that

contained sequences of numbers (PRI's), and

produced a histogram as well as a pie chart to

display the information. The histogram

displayed the number of bins and the range on

the x - axis, and the number of values in each

bin on the y - axis. It also took information

such as the file that the user wanted to read Fi8ure 3- Pie Chart from Histogram Program.

from, whether or not the user wanted to enter the data range manually or have it

calculated automatically, and also whether or not the user wanted the pie chart (see figure

3) and the bar graph to be displayed on the same or separate screens.

Writing this program involved a lot of research as a result of having to learn the C

programming language. It also involved many new concepts including pointers,

graphics, structures, as well as histograms. Each of these concepts proved useful as I

learned to join them to form a well-organized and maintainable program.

Results

The project produced two valuable computer programs for use in the EDF's research

on radar PRI analysis, and helped me to learn valuable programming skills that are useful

in college as well as the work place.

For example, one major part of programming as equally important as the results

of the program is the organization and design of the software. This is where I have

3-8

improved the most. By making my program more modularized, so the functions act

independently of each other, I have greatly improved my programming efficiency,

organizational abilities, and problem solving skills.

The EDF has benefited from this project as it provides them with a method for

easily creating a set of PRI's that are useful for testing and experimentation. The data has

already been used in other EDF research efforts that are developing techniques for

determining the crystal countdown of a radar from PRI information.

Conclusion

The project assigned to me was a success. It not only produced useful results for

the EDF / Rome Labs, but also improved my programming abilities and general problem-

solving skills. It is something that I am sure to use in college as well as my career as an

engineer. The project also increased my knowledge of computers in general as I learned

to install the necessary software on my assigned computer and configure the hardware.

Another important and beneficial result of this experience was the insight I gained about

working in a true engineering environment as an individual and part of a group.

3-9

APPENDIX A

PRI generation program written using Turbo PASCAL

3-10

\ ()
C*)
r* PRI Generator *)
v *■*

r*)
(* The purpose of this program is to generate random PRI's for *)
(* SIGINT research and development *)
v *■»
r*)
/* Craig Belusar *)
;* July 10, 1994 *)

Program Ra(Input,output);

Uses
Crt;

Var
f:text;
amountinteger;
t: real;
outrstring;
list:array[1..100]ofreal;
variance: real;
frequency.real;

Procedure Enterlnput(var amount:integer;var out:string;var variance,freqency:real);

Begin
Writeln ('Please enter the desired amount of PRIs.');
Readln (amount);
Writeln ('Which file would you like to send the output to?');
Writeln ('Please include path, and complete file name.');
Readln(out);
Writeln('Please enter the desired variance.');
Readln(variance);
Writeln('Please enter the desired crystal frequency.');
Readln(frequency);

End;

Procedure random_numbers(var fitext; var frequency:real;var variance:real;amount:integer);

var
count:integer;
number:real;
Pri:real;
multiple:integer;

Begin

3-11

Arc-Second Raster Chart/Map Digitized Raster Graphics
Data Exploitation

Shawn H. Bisgrove

Rome Free Academy
500 Turin Street

Rome, NY 13440

Final Report for:
High School Apprentice Program

Rome Laboratory

Sponsored by:
Air Force Office of Scientific Research

Boiling Air Force Base, DC

August 1994

4-1

Arc-Second Raster Chart/Map Digitized Raster Graphics
Data Exploitation

Shawn H. Bisgrove
Rome Free Academy

Abstract

A program was developed using C in a UNIX environment on a SPARC 10 running SunOS 4.1.3

to efficiently exploit ARC Digitized Raster Graphics from a mounted compact disc and create multiple

outputs. Utilizing SyBase's Structured Query Language as a standardized storage method this program

populates the database tables. A raw output and a formatted output can also be created to assist in

cataloging ADRG material. This program is useful when attempting to catalog large collections of ADRG

cartographic material.

4-2

Arc-Second Raster Chart/Map Digitized Raster Graphics
Data Exploitation

Shawn H. Bisgrove

Introduction

The Air Force Geographic Information Handling System (AFGIHS), created to access digitized

cartographic versions of physical map data obtained by the Defense Mapping Agency (DMA), lacked the

ability to quickly remove pertinent data from a compact disc using the ARC Digitized Raster Graphics

(ADRG) format and display the data footprint in the Spatial Display Tool (SDT).

According to document PS/2DJ/100, the first revision of ADRG specifications dated April 1989,

and the superseding release Mil-A-89007 dated February 1990 as released by DMA state, "The equal Arc-

Second Raster Chart/Map provides for a rectangular coordinate system and projection system at any scale for

the entire ellipsoid based on the World Geodectic System 1984. An ARC Digitized Raster Graphics

consists of Digitized Raster Graphics transformed into the ARC system and accompanied by ASCII encoded

support files." The fourth edition release of Digitizing the Future, a publication by DMA, estimates around

that 4000 ADRG titles are available representing 14,000 scanned paper maps. ADRG information is

stored on a ISO-9660 compact disc using ISO-8211 ASCII data. These standard specifications insure the

wide use of ADRG compact discs in almost any system produced at this time.

As of release 3.0 beta, only two programs, the Image Index Support SyBase Compilation (Iis), not

to be confused with Iis flatfile compilation, and the Map Administration Tool (MAT), used with the

Mapping Applications-Client/Server (MACS), relied on SyBase as a standardized link for manipulation,

storage, and retrieval of information. These MACS programs are designed for a multitude of map display

and manipulation techniques and, therefore, these programs require a graphical interface for the displaying

of digitized maps. SyBase, an interactive client server, developed by SyBase Incorporated, uses a database

type entry of data at both a programming level and at a user interactive level. This combination allows for

the creation of a host of programs to work with the interactive user environment. This entry of data can be

queried against or recalled at any time and is uniformal so database structures can be changed. SyBase, since

it is not a graphic dependent program, opens up the possibility of populating these database tables with text

only system with a CD-ROM drive and recalling the information on a networked machine capable of a

Graphical User Interface (GUI) required by AFGIHS.

4-3

Discussion of Problem

With older programs, problems occurred when ADRG compact discs contained multiple

distribution rectangles or multiple zone distribution rectangles. These programs used fixed hard coded

design and did not account for the non-standard contents of ADRG such as JNC's that contained polar charts

and JOG's with incompatible data. The coding of CDREAD allows the program to work in any given

situation with an ADRG standard compact disc as specified by the ADRG specifications. The compact disc

follows a hierarchical file design which creates logical breaks in the specific information. The header file is

of variable length which means it changes in size and content depending on the number of distribution

rectangles that exist. This program is designed to read the file not as a fixed layout but rather a variable

length. This design allows for a near logical header extraction of data from the individual files.

With Iis data footprints of an ADRG could be manually entered and displayed. This process wasted

both time and energy and required the user to have knowledge of cartographic map data. The user would

need to know the proper placement of the coordinates. Once enter, however, the user could view the area

encompassed by the ADRG.

In some cases a distribution rectangle will have multiple compact disc directory entries. The

specification explains for these distribution rectangles have multiple source graphics. Multiple source

graphics would occur in cases where a physical map was too big for physical scanning into one file, sheets

with multiple datum's, and sheets with special processing requirements. These would all create special

situations when obtaining information for the compact disc.

Methodology

Using SyBase's C language developing libraries and include files as well as the standard UMX

include files and libraries, an application called CDREAD was created to quickly modify existing SyBases

tables as well as creating a more extensive set of table and subsequently update with information from other

ADRG compact discs as it is added. This application was designed so that datafields found in the files of

an ADRG are subsequently cataloged inside appropriate SyBase tables. This creates a standardized link that

current and future MACS programs could use to create a complete footprint in the SDT including many

aspects unique to the ADRG format such as product type. The program that has been created updates the

Image Iis tables so that a basic red footprint can display the covered area contained on the ADRG compact

disc. The ADRG information is stored in the Iis tables until the user deletes the specific information

and/or truncates the tables. This information then can be queried and manipulated using the SyBase's

4-4

Interactive Structured Query Language (ISQL), Iis SyBase compiled, or with another third party program

designed to work with the specific SyBase tables.

The code was developed using linked lists in order for the dynamic "on the fly allocation" of

memory to occur. A linked list is created to contain the distribution rectangle information and contains two

pointers to the linked list of charts. One pointer acts as a current placement in the list and the other as a

head or root placement. This allows the program to efficiently access data within a linked list containing

the information after population occurred. Using pointers, management of the linked lists becomes very

simplistic and can quickly and logically allocate just the memory needed in any given scenario. These

linked are malloc'ed as information was obtained so that memory would only be used if data existed for the

fields. With the use of pointers distribution rectangles are read in and malloc'ed first, then once completed

the charts are allocated and read in. This follows the hierarchical structure that simplifies ADRG data

exploitation.

Memory problems would be a very rare occurrence due to CDREAD coding that allow an

allocation of memory on demand. This "on the fly allocation" will accommodate for any ADRG compact

discs no matter how many distribution rectangles or charts exist. Also a standard or error exit does not

leave inaccessible links to memory blocks thus creating a memory problem when the program is executed

multiple times. The limitation with memory allocation is that when no more is allocable the program will

compromise some but not all the data. This would only be a problem on systems which are taxed with a

full memory load.

The code itself is hierarchically design to match the file hierarchical design contained on the ADRG

compact disc. This hierarchical file format, which is required to load information from an ADRG and gives

the program maximum results and without using excess memory. The compact disc's header file known as

TRANSH01.THF contains information necessary for finding and obtaining the distribution rectangle and

subsequently the chart files. These distribution rectangles follow the ADRG directory and file name

convention. The convention ssccdd where ss is the chart series code, cc is the country code, and dd is the

distribution rectangle number is used in all ADRG compact discs. This naming convention is used when

reading in files specific to a particular distribution rectangle and chart.

All of these files, including the TRANSH01.THF, do not have a preset limit, or a specific order,

so in programming a code needed to be developed that would be flexible. When CDREAD opens files

containing information, the ADRG naming convention is used. This naming convention ss is the chart

series code, cc is the country code of the northwestern most source graphic, and dd is the distribution

rectangle on each CD-ROM. For each distribution rectangle four files and a directory exist These files

4-5

contain specific information used in identifying the current distribution rectangle or chart. The file

ssccddOl.GEN contains all the general information pertaining to the distribution rectangle. The

ssccddOl.QAL file contains a security and release field, a up to dateness field and a horizontal and vertical

accuracy field. The ssccddOl.OVR stores the overview image information. The ssccddzz.IMG, where zz

corresponds to the ARC Zone Number in which the image data exists, stores the scanned graphic. The

directory ssccddgg, where gg corresponds to the number of the northwestern most chart, starting at one and

increasing sequentially, contains all chart information. In this directory is the ssccddgg.SOU file which

contains information regarding individual charts. Some ADRG compact discs have different countries on

the same disc so it was not reliable to hardcode in the sscc obtained from the first distribution rectangle.

This field is exploited from the header file and placed in the distribution rectangle fields first. A compact

disc could for example contain four distribution rectangles JABD01, JAAZ02, JAAZ03, JAAZ04. This

would create a problem if the program attempted to assume JABD for all four distribution rectangles.

Once all pertinent ASCII data has been read from the compact disc, CDREAD proceeds to dump

information to the files selected by the user at the time of execution. Two forms of ASCII dump files are

created of the ADRG compact disc. A raw dump of all information occurs as soon as the information

populates the memory structure and a file is written, and subsequently updated with fields, until all data is

received. The layout of the raw ASCII dump is documented in appendix A. At this point the stream is

closed and the file is written using the standard UNIX commands fprintf and ultimately the stream is

closed with fclose. The raw dump contains no headings for the values but is useful when information is

not contained in either the formatted or SyBase dump. The raw dump contains all information about the

compact disc, distribution rectangles and charts. A formatted ASCII dump is created to be ultimately

printed out or evaluated to decide if to load the information from the compact disc into SyBase tables. The

formatted ASCII dump contains some of the fields as outlined in appendix A. This information could be

conceivably used to create a third party utility to populate SyBase tables with specific information. With

these two dump files, the data is reset before each compact disc is exploited. This insures the files will not

become too large for any particular system. If this information cannot be written to the

cdread/runtime/dumpfiles/ directory then the information is defaulted to the current directory. This

could occur due to many reasons. Two of these reasons would be that the directory has been deleted and

must be recreated or a lack of rights to access the directory. This is a problem that can be resolved by your

super-user granting directory read and write access to the appropriate users.

When populating SyBase, CDREAD updates six distinct tables as documented in appendix B.

CDREAD updates three tables used in conjunction with Iis and updates three more tables to be used by

future programs. With Iis the image, image_comments, and image_asc_be tables are manipulated.

Iis originally used the tables to display a graphical footprint outlined in red based according to the

4-6

coordinates, a picture in a popular image format that would be contained in the footprint, the type image,

and the directory where the image exists for viewing purposes. With ADRG's however, the tables will be

used just for displaying footprints.

The image table, used by Iis SyBase compiled, contains information about the distribution

rectangle. The image_comments table contains the specification identification as well as the

corresponding charts series designation, unique source identification, source edition identifier, and

significant date. The image_asc_be table is used just to help keep track of the number of compact discs

owned of the same type in the collection. Three other tables cdreadjnain, cdread_dr, cdread_chart

are manipulated. The cdreadjnain table contains information about the compact disc. The cdread_dr

table contains one entry per distribution rectangle with the same query as the main information existing in

each entry. The cdread_chart table contains one entry per chart existing in the distribution. This table

has the same query information existing for the compact disc general information as well as the distribution

rectangle so that a common query point is maintained when searching for specific information. Once done

manipulating tables, the program proceeds to updates the statistics in each of the SyBase tables so that a

chance of error when querying the field is non-existent.

In evaluating the data retrieved from the compact disc a few conversions are necessary. CDREAD

extracts the data from the compact disc in the form of strings which are stored as the string length plus a

null terminator. This method is the easiest to read from a file byte by byte. Once a link between

CDREAD and SyBase is created many of the entries are converted from strings to integers. The conversion

for degree notation is used on all coordinates stored in the SyBase tables. The ADRG format specifies the

use of DDMMSS.SS for latitude and DDDMMSS.SS for longitude whereas SyBase tables use a converted

integer. The formula [value = 3600 * (sign * (deg + min / 60 + sec / 3600))] is used to

convert to the integerial storage point and a conversion can be made back to DDDMMSS for longitude and

DDMMSS for latitude. In order to make this conversion the program should divide by 3600, obtaining a

double (ex. 10.508333). Next a parsing of the integerial value will result in the degrees (ex. 10). The

decimal portion of the number then is multiplied by 60 (ex. 0.508333 * 60). The next integerial value is

the minutes (ex. 30). Once the integer is removed the remaining decimal is multiplied by 60 (ex. 0.4999 *

60). This last integer is the second of the DMS coordinate. The program also needs to account for the sign

and assign the proper cardinal direction to the coordinates. This method looses the .SS for storage purposes

and does not affect the accuracy of the footprint. ADRG compact disc's generally tend to contain zeros in

the .SS place depending on the accuracy and size of the map. In the program implementation a basic

parsing technique is used to obtain the degrees, minutes, and seconds.

4-7

A problem inherent in the programming design would be the lack of duplicate error checking.

With CDREAD no comparative query is done before information is exploited and added to the SyBase

tables. There is currently no functionality for resolving redundant entries. This poses no problem in the

actual search and query of an entry except Iis SyBase Compile will just display the redundant entries.

This program has been designed to work with any ADRG compact disc following the ADRG

specifications. This program does correct the pitfalls of earlier programs with fixed hardcoding. With the

ARC digital raster graphic information now able to be displayed using Iis or a third party program a person

can quickly sort or find an ADRG compact disc in a collection. Using a query within Iis, a user can quickly

see if a compact disc for the area exists as well as how many copies. From that point a determination can

be made on what is to be done with the data.

Conclusion

With past programs flexibility was a trait to be desired in a software application. This led to

complex battles with an operating system to place these programs online. This lack of flexibility was a

disadvantage when trying to load in ADRG material. Past programs also only worked with existing

software rather than offering a bridge to expand upon. Since CDREAD works with Iis as well as leaving a

link to a new program, making the design capable of expansion. Using the formatted ASCII dumps a user

can quickly and easily visually retrieve information about the ADRG compact disc. The flexibility of the

program as well as the ease of compilation ultimately should create a better organization of ADRG

material used.

With a conversion over to digital cartographic maps a need for a cataloging program has been

created. This need based on the collection sizes of today's digital resources if compounded by older methods

of organization. With ADRG material organization of the compact discs becomes a hassle because of the

quantity as well as replacing the out of date material with new material. A future program could be

designed to query existing compact discs of a certain age. Once displayed a user could physically remove

the compact discs using the ADRG title and series designator displayed and replace them with new more up

to date revisions. This would provide a cost effective way of managing collections of ADRG material in

existence.

In the future, programs relying on CDREAD hopefully will be used to quickly catalog ADRG

compact discs into a SyBase table which a third party program similar to Iis could quickly display selective

information. Examples would include displaying all of the JOG-A's in blue and all the TPC's in green.

Certain out of date material would, when queried, be displayed in a thatched rectangle so a user can maintain

4-8

an extensive collection of ADRG material with little or no effort. This would create a visually assessable

list of coverage by a particular type of chart. This has unlimited possibilities and with the included source

code modifications can be made when specifications are changed or if need warrant it.

CDREAD due to its simplicity of code and flexibility in setup can be updated and customized to

fulfill any front end capacity. This program contains traits which make it an ideal stepping stone to the

future of ADRG data exploitation.

References

Digitizing the Future 4th Edition. Defense Mapping Agency Aerospace Center, Missouri. 1993.

Kernighan and Ritchie. The. C Programming Language. PRENTICE-HALL, INC., Englewood Cliffs, New
Jersey. 1979.

MIL-A-89007 ADRG Specifications Second Edition. Defense Mapping Agency Aerospace Center,
Missouri. 22 February 1989.

PS/2DJ/100 ADRG Specifications First Edition. Defense Mapping Agency Aerospace Center, Missouri.
April 1989.

4-9

AN IMPLEMENTATION OF THE
MULTIPLE SIGNAL CLASSIFICATION ALGORITHM (MUSIC)

INMATLAB

Stacy Fitzsimmons

Vernon-Verona-Sherrill Central High School
Rte. 31

Verona, NY 13478

Final Report for

High School Apprentice Program
Rome Laboratory (AFMC)

Sponsored by:

Air Force Office of Scientific Research
Boiling Air Force Base, DC

and

Rome Laboratory (AFMC)

August 1994

5-1

AN IMPLEMENTATION OF THE
MULTIPLE SIGNAL CLASSIFICATION ALGORITHM (MUSIC)

INMATLAB

Stacy Fitzsimmons
Vernon-Verona-Sherrill Central High School

Abstract

An algorithm to separate multiple signals on an antenna using spatial processing was implemented

in MATLAB using concepts from linear algebra. A simulation was created with a given number of

antenna array elements and a given number of incoming signal wavefronts, accompanied by noise.

Functions were written to generate the signal environment, the noise waveforms, the array manifold, and

the array data in order to set up the simulation. The MUSIC (Multiple Signal Classification) algorithm

was used to calculate the angles of arrivals of the incoming signals so they could be separated from the
other incoming signals and processed.

5-2

AN IMPLEMENTATION OF THE
MULTIPLE SIGNAL CLASSIFICATION ALGORITHM (MUSIC)

INMATLAB

Stacy Fitzsimmons

Introduction

Collecting signals from an airborne platform presents a number of challenges. Perhaps the most

challenging problem stems from the fact that the platform will generally receive a multitude of signals, all

coming in from different angles. In order to process any one of these signals, we need to have a way to

locate a specific signal and separate it from the other incoming signals. Conventional processing

approaches such as time-domain and frequency-domain processing will not work to separate just one

signal because many or all of the incoming signals can occupy the same frequency bandwidth. However,

if the signals each arrive at the platform with a different angle of arrival (AOA)1, we can use a spatial

processing approach. To do this, instead of using a single antenna, we use an antenna array with a known

geometry. With the spatial diversity provided by the antenna array, we can calculate the signal AOAs.

Therefore, the signals can be separated from one another and processed. One algorithm which performs

this calculation is the MUSIC (Multiple Signal Classification) algorithm.

Discussion of Goals and Objectives

The IRAA COMINT Croup at Rome Laboratory is quite interested in spatial processing algorithms,

since many of their systems are designed to be used from airborne collection platforms. They wanted a

capability to simulate these algorithms in-house in order to gain a better understanding of how they

worked. Since they use MATLAB extensively for in-house research, and since MUSIC is such a

fundamental algorithm for spatial processing, the overall goal of the apprenticeship became to produce

an implementation of the MUSIC algorithm using MATLAB.

This involved first becoming familiar with the operation of MATLAB and its associated toolboxes (in

particular, the Signal Processing Toolbox), and the general concepts of linear algebra. Then the

fundamentals of the MUSIC algorithm were reviewed, using reference [3] and some help from the

technical consultants. Finally, the MUSIC algorithm itself was implemented as a MATLAB function.

1For this report, we will only be concerned with azimuthal angle of arrival; we do not consider the effects
of different elevations (see Appendix A). If we wanted to consider these effects, the array manifold
(discussed later) would become a function of both AOA and elevation.

5-3

The Data Model

Before we can explain the MUSIC algorithm, we first need to have a model of the data received by the

antenna array. Figure 1 shows a snapshot in time of the incoming signal wavefronts and the receiving

antenna array elements (in this example, we are using a linear array). The antenna array contains a

variable number of elements, M. The number of these array elements must be greater then the number of

incoming signals, K, so that all the signals will be accepted. If M is less than K, the array is considered to

be "overloaded,-- i.e. there would be more unknowns than equations to solve them. The signal

wavefronts all have different angles of arrival (AOAs) at the antenna array elements, and are

accompanied by a spatial noise field (due to environmental noise, for example). The antenna array
samples this signal + noise environment periodically in time.

T1 BPF -OVO
 m-l,***,M data "snapshot" column vector

(m-dimensions) at time index, n

ARRAY FlFMFKfTg

V

V

k-1 ,•••,<

K signal
wavefronts, with

discrete DOAs

ARRAY OVERLOAnrn |FM<-K

Figure 1: Collection Scenario

In addition to modeling the signal environment, we also need to model the antenna array itself. In

order to do this, we must "calibrate" the array - that is, send a known signal at it from an known AOA,

and measure the actual outputs of each of the array elements as compared to the original known signal.

This will give us array calibration data for a single AOA. Using this process for every possible AOA

5A

between 0° and 360° (using a fixed step size, called the resolution), we build up a table of array calibration

data, also known as the array manifold.

Figure 2 shows the array manifold for an array with 3 elements. In this case, the array calibration

data for a single AOA is simply a point in 3-dimensional space, since it represents the outputs of each of

the 3 antenna elements. Thus, the array manifold becomes a "rope" in 3-space.

sensor #1

sensor #2

Figured Array Manifold

Finally, the actual output of the array elements can be expressed as a combination of the above

components, i.e. the incoming signals, the array manifold, and the noise. In particular, each signal is

scaled by the array manifold vector corresponding to its AOA (these vectors are called the steering

vectors). The noise associated with each array element is added to this.

Figure 3 shows the output of an array with 3 elements. Since the data received by each of the array

elements at a particular time can be represented as a point in 3-space, the data received over time

becomes a curve winding through 3-space.

5-5

sartsor #1

sensor #2

Figure 3: Data Received by Antenna Array

Matrix Representation

The above data model can also be explained by using matrix equations. This is particularly handy,

since MATLAB is designed to operate on matrices directly. Let S be the signal matrix. Each column of

this matrix is a snapshot in time of the K signals. If we assume that we have N snapshots in time SisK
byN.

S =

\M *i('2)
*iM *ife)

.s*M SM **('*)
(1)

The spatial noise field can be modeled by another matrix, V. Since the noise is assumed to be present

at each array element, V will be M by N. Noise is the interference that might occur with the signal. We

will assume that the noise is white Gaussian noise, and that the noise at each array element is

uncorrelated. Each column of V shows a snapshot in time of the noise at each array element

V =

viM v,(r2)
v

2('i) Vlih) v2fe)

>(0 vM - vu(tN\
(2)

5-6

The array manifold can be expressed as a matrix a, where each column represents the complex array

response for each array element at a particular AOA. Thus the matrix has M rows, but the number of

columns is dependent of the resolution of the array calibration. For example, if the resolution of the

calibration is 1°, a will have 360 columns, while if the resolution is 0.5°, a will have 720 columns.

a =

0,(6,) 0,(0,)

au(ex) au(02) ... a*(0360/«^*,.)
(3)

We now let A be the array manifold vectors corresponding to the AOAs of the signals in S. Thus, A is

MbyK. These vectors are also called the steering vectors. In this equation, <plt <f>2, ... <pK represents the

AOAs of the signals in S.

A =

<h{<t>x) <h{4>l) - <hi<f>K)
<h(<t>l) <h{<t>l) - <hi<l>K)

ßu{<t>\) <tu(<f>2) ... a„(0K) (4)

Finally we get to the representation of the data actually emitted by the array elements. From the

previous description, we know that we have to first scale the incoming signals by their associated steering

vectors, and then add the noise associated with the spatial noise field. This data matrix, X, can be

calculated by:

X = AS + V (5)

Thus, X is an M by N matrix whose columns are each a snapshot of the received data at each array

element.

x =
*i(0 *i('2) - XiM
xiM x2(t2) ... x^)

*M x»ih) - XMM. (6)

5-7

The MUSIC Algorithm

Now that we have a description of the data model, we can discuss the MUSIC algorithm. MUSIC

uses a subspace approach to separate the individual signals from each other and the noise. What exactly

does that mean? We can think of the M-dimensional data signal given above in (6) in terms of a vector

space; in this case, it would be an M-dimensional vector space. Given this M-space, MUSIC tries to

separate the signals and noise into two orthogonal subspaces — the signal subspace and the noise

subspace. The received signals must lie in the signal subspace. Thus, to calculate the signal AOAs, we

simply need to find where this signal subspace intersects the array manifold. The vectors to these

intersection points on the array manifold are simply the steering vectors. This situation is illustrated in

Figure 4 for an antenna array with 3 elements, and two signals. Thus the signal subspace is a plane (2

dimensions, since we have 2 signals) and the noise subspace is a line (3 total dimensions - 2 signal
dimensions = 1 dimension) that is orthogonal to the signal subspace. The vectors a(0,) and a(02) are

the steering vectors. We will refer back to this figure in the subsequent description of MUSIC.

array
manifold

/ «onaUuWP^ _ -
min/nolM

Figure 4: MUSIC Signal and Noise Subspaces

The only information the MUSIC algorithm needs is the array manifold a and the received data X. It

gets the information it needs to separate the M-space into the signal and noise subspaces from the spatial
covariance matrix of X, given by

5-8

=feh" R
(7)

where the H superscript stands for Hermitian transpose (complex conjugate transpose). See Appendix A

for a complete linear algebraic discussion of why MUSIC uses this covariance matrix and what its special

properties are. For our purpose, the important thing to know is that since R is Hermitian, its eigenvalues

are real and non-negative. Also, its eigenvectors are orthogonal, so they form an orthonormal basis for the

antenna array M-space. If we can separate these eigenvectors into those corresponding to the signals and

those corresponding to the noise, we will then have orthogonal basis vectors for the signal subspace and

the noise subspace, and these subspaces will be orthogonal to each other. Referring to Figure 4, the

vectors e, and e2 are the eigenvectors corresponding to the signal subspace. Notice that they define an

orthogonal basis for the signal subspace. The vector CmiM/m)ijt is the eigenvector corresponding to the

noise subspace. Notice that it is orthogonal to the signal subspace defined by et and e2

Now the problem is determining which eigenvectors correspond to the signal subspace and which

correspond to the noise subspace. From the results given in Appendix A, we also know that the

eigenvectors corresponding to the noise subspace will have the smallest eigenvalues. Furthermore, these

eigenvalues will all be equal. We can determine these eigenvalues by plotting the eigenvalues and

finding where the eigenvalues stop decreasing and stay constant. The number of these minimum

eigenvalues gives the dimension of the noise subspace, and their associated eigenvectors define the noise

subspace. Similarly, the number of other eigenvalues (those larger than the minimum) gives the

dimension of the signal subspace (as well as the actual number of signals), and their associated

eigenvectors define the signal subspace. Thus, if N^, is the number of noise eigenvalues, then NSIG,

the number of signals, is given by:

NSIG=M-NMiM (8)

The next step is to find the AOAs. This can be done in two ways. The first way to do this, mentioned

above is to find the vectors in the array manifold that lie in the signal subspace. The points where the

array manifold intersects the signal subspace would give the steering vectors, and hence the AOAs. The

other way is to find the vectors in the array manifold that are orthogonal to the noise subspace. This is

equivalent to the first method, since the noise and signal subspaces are orthogonal. We will use the

second method because with the inaccuracies in our model and calculations, the array manifold might not

actually intersect the signal subspace.

5-9

To find where the vectors of the array manifold are orthogonal to the noise subspace, we need to

minimize the magnitude squared of the projection onto the noise subspace. To find the projection of each

array manifold vector onto the noise subspace, we simply use the dot product:

P = a(0)".E.

where EN is the noise subspace. We can then find the magnitude squared of this projection by

calculating the dot product of the projection with itself:

Ipfl2 = p"-P

Notice that this formula is really the same as the Pythagorean Theorem in M dimensions. For example, if

P = then = P -p = [a b] ^J- - a + b . Clearly, this is just the Pythagorean Theorem in 2

dimensions as shown below:

Figure 5: Pythagorean Theorem

Where the array manifold is orthogonal to the noise subspace, its projection will be zero. Thus, to

find the steering vectors, we can compute the magnitude squared of the projections of all the array

manifold vectors onto the noise subspace. We take the NSIG number of these with the smallest

projections to be the steering vectors. In our case, we will use the inverse of this projection. If we plot the

inverse of the projection of the array manifold onto the noise subspace versus AOA, we should then see

peaks at the AOAs of the incoming signals. This plot is called the MUSIC spectrum. We can then use a

peak-picking algorithm to select these peaks.

MATLAB Implementation

The MATLAB implementation of the MUSIC algorithm follows directly from the matrix

representation given in the previous section. The function which implements the main part of the MUSIC

algorithm is in the MATLAB function "MUSICAOAs." This function expects to be passed the data

received at the antenna array, X, and the array manifold, a. It returns the AOAs of the signals, and the

spatial covariance matrix R. A separate function, "data_gen", was created by Lt Wintermyre to set up the

5-10

data matrix X for MUSIC_AOAs. MUSIC_AOAs calls two other functions, "pick_noise_eigs" and

"pick_peaks." Pick_noise_eigs lets the user select the cutoff between the signal and noise eigenvalues.

Pick_peaks returns the AOAs by locating the peaks in the MUSIC spectrum.

The MATLAB code for data_gen is in Appendix B.

function [AOAa,R] - MUSIC_AOAs(X,a)

% [AOAs,R] - MUSIC_AOAs(X,a)
%
% This function computes the angles of arrival of the signals in X using the
% MUSIC algorithm.
%
% INPUTS:
% X - M by N matrix of data received by the antenna elements
% (M - number of array elements, N - number of data sample
% points)
% a - array manifold calibration data
% (M rows, number of columns depends on resolution of the
% calibration data. We will assume the calibration data
% represents 360 degrees.)
% OUTPUTS:
% AOAs - vector of angles of arrival of the signals in X
% R - spatial covariance matrix of X
%
% Stacy Fitzsimmons 8/15/94

%%%
% Initialize constants for MUSIC algorithm
%%%

[M,N] - size(X); % dimensions of X
[a_rows,a_cols] - size(a); % dimensions of a

a_res - 360/a_cola; % resolution of array manifold in degrees

%%%
% NSIG (number of signals) Estimator
%%%

dispCEstimating NSIG-')
R - X*X'/(N-1); % spatial covariance matrix
K - rank(R); % rank of covariance matrix (should - M)

dispCRanlc of spatial covariance matrix')
diap(K)

if K — M % data not full rank
error('Aborting (data not full rank)')

end

[e_vecs,DJ - eig(R); % eigenvectors and eigenvalues of R (the eigenvalues
% are on the main diagonal of D)

e_vals - diag(D); % extract vector of eigenvalues from diagonal of D
dispCEigenvalues of spatial covariance matrix')
disp(e_vals)

cutoff - pick_noise_eigs(e_vals) ; % pick cutoff between signal and noise eigenvalues

5-11

N_noise - M - cutoff + 1; % number of noise eigenvalues
*JfIG " M-N_noise; % «»timation of the number of signals
dispCEstimate of number of signals')
disp(NSIG)

En - e_vecs(:, cutoff:M); % noise eigenvector matrix
Es - e_vecs(:, l:cutoff-l); % signal eigenvector matrix

%%%
% Signal AOA Estimator
%%%

F - zeros(l,a_cols); % allocate storage for F vector
for theta_index - l:a_cola

cur_a - a(:, theta_index); % column of a at theta_index (the array
* manifold for a specific value of theta)

p - cur_a'*En; % compute projection of current array manifold
% vector onto noise subspace

F(theta_index) - p'*p; % compute squared magnitude of projection

% This is an equivalent way to do the same thing
% F(theta_index) - <cur_a'*En) * (En'*cur_a);

end

F - real(F); % „^^ 8ure F is real
1-/F; * invert so we see peaks at AOA's

theta_plot - -90+a_res:a_res:90; % x axis from -90 to 90 degrees
F_plot - [F((270/a_res>+lslength(F)), F(1:90/a_res>];% extract sections of

% F vector that correspond to -90 to 90 degrees

!?!nt1^oT?:a-pl0t'F-pl0t, % plot the tmslc »Pectrum (F) title(•MUSIC Spectrum')
xlabel('Angle of Arrival«)
grid

d^(:A0A:ko?e:JÄ'r,; % get the A0Aa by picicing the pea,t8 in th* °»*"™
disp(AOAs)

Simulation Results

In order to test the MUSIC.AOAs function, we created script that generated a simulated collection
scenario. The script is listed below:

% This script is a simulation of the MDSIC algorithm.

%%%

% Set up parameters for data_gen
%%%

M " 3; * number of array elements
K ~ 2' % number of signals

max_snr - 10; % maximum SNR in dB (- 10*log(variance(signal)/variance(noise)))
% (assuming zero mean, so that mean_sqr - variance?)

5-12

AOAs - [30, 80]; % angles of arrival of signals (in degrees; should be between
% -90 and 90; 0 degrees corresponds to broadside)

Amp - [1, 1]; % amplitudes of signals (1 is maximum)

fs - 8000; % sampling rate
K - fs/2; % number of sample points
array_res -0.5; % array manifold resolution in degrees
f_loc_osc - 100000000;% frequency of array receiver local oscillator

% (100 MHz)

fc - [2000, 1900]; % carrier frequencies of FM signals (note that we're
% using lower frequencies so we can hear the resulting
% FM signals)

fdev - [100, 100]; % peak frequency deviations of signals, in Hz

% Generate our modulating signals. In this case, we are using simple tones,
% but in general, the modulating signals could be any signals (such as speech)

fm - [200, 500]; % frequencies of modulating tones
t - 0:l/fs:(N-l)/fs;% generate time vector
m - zeros(K,N); % allocate storage
for ind - 1:K % generate tones
m(ind,:) - cos(2*pi*fm(ind)*t);

end

% Generate the data matrix and array calibration data
[X,a] - data_gen(M,K,m,fc,fdev,fs,AOAs,max_snr,f_loc_osc,Amp,array_res) ;

%%%
% Call MOSIC_AOAs to get signal AOAs
%%%

[Est_AOAs, R] - MOSIC_AOAs(X, a);

In this particular case, we had an antenna array with 3 elements, 2 signals (simple tones at

frequencies of 200 Hz and 500 Hz) with AOAs of 30° and 80° respectively. When the script calls

MUSIQAOAs, it presents the user with a graph of the eigenvalues, so that the user can select the cutoff

between the noise and signal eigenvalues, as shown on the next page:

5-13

2S
Click to indicate cutoff tor noise eigenvalues..

1-5

0.5-

-i 1 —r-

1 1-2 1-4 1-« 1-8 2 22 2.4 2JB ZB 3
Eigenvalue Indices

Figure 6: Selecting Eigenvalue Cutoff

From the graph it is quite clear that the cutoff should be between the 2nd and 3rd eigenvalues. After

clicking to select the cutoff, MUSIC.AOAs computes the MUSIC spectrum and returns the AOAs. The

MUSIC spectrum for this example is shown in Figure 7. It clearly shows peaks at 30° and 80°, which are
in fact the AOAs of the original signals.

10*

10'

10'

10*

10*

10"

10"

MUSIC Spectrum
sl:'iil:j'::Jllj'iH!Jjjjj||j{MiSiiiJ:Miiiiii:*^

!!!£!!!!!!!!!I!!!!!!!!! ftj!!!!!!!r

!!! f!!!!!!!!! f!!!!!!!!n!l !!!!!!£

!!$H!!!!!!!(*!!!!!/!!&!!!!!!!!

'!:•••' !!!:!!'!!!:!J!!!! üüjj üü!;;;»!!!! in ;a •.uiiuirw.'.

liHiiiMiiiiliiHiJii""'"«"."'""*!!:!:"^

10-
-100 -60 -60 -40 -20 0 20 40 60 80 100

Angle of Arrival

Figure 7: MUSIC Spectrum for 2-Signal Simulation

5-14

Conclusion

Since separating signals to process them can be difficult, especially on an airborne platform, it is

necessary to find alternative ways to the conventional processing methods that use frequency as their

main factor in the separation. Using space instead of frequency is just as efficient and it eliminates the

problem of separating several signals that share the same frequency bandwidth. The MUSIC (Multiple

Signal Classification) algorithm can be conveniently implemented in MATLAB and used to locate specific

signals so they can later be separated and processed.

The MUSIC implementation described here (along with its other associated MATLAB functions) will

be used in ERAA as the foundation for an in-house capability to simulate spatial processing algorithms.

References

Leon, Steven J. Linear Algebra with Applications: Second Edition. New York: Macmillan Publishing

Company, 1986.

Oppenheim, Alan V., Alan S. Willsky and Ian T. Young. Signals and Systems. New Jersey: Prentice-

Hall, Inc., 1983.

Schmidt, Ralph Otto. A Signal Subspace Approach to Multiple Emitter Location and Estimation.

Michigan: University Microfilms International Dissertation Information Service, 1982.

Technical Consultation

lLt. James Wintermyre - MATLAB, signal processing, MUSIC algorithm, final report consultation

Rollie Holman - MUSIC algorithm description, Appendix A, final report consultation

Michael Weir - Linear algebra, signal processing, final report consultation

5-15

Appendix A: A Student MUSIC Algorithm as an Application of Linear Algebra with Geometric
 Interpretation

This appendix includes a description of the problem for the summer apprenticeship program, as well
as the hnear algebra behind the MUSIC algorithm. It was written by Rollie Holman to be mduded as a
supplement to the final report.

t

A.1 INTRODUCTION

Presented here is a student problem for implementation of a Multiple Signal Classification (MUSIC)
algorithm. A MUSIC implementation serves as an instructive project requiring a college level knowledge
? ^SlSni

1
aXU! ?dUty fa *** USe 0f MATLAB- This appendix presents the linear algebra rationale

for the MUSIC algorithm for the student implementation. Where relevant, geometric interpretation of the
signal/vector processing steps is stressed. This write up also places the student MUSIC implementation
in a context of application and algorithm maturity.

The principal references are:

Schmidt, Ralph Otto, A signal subspace approach to multiple emitter location and spectral estimation. PhD
Dissertation, Stanford University, 1982, TK5102.5.S35 1982.

Strang, Gilbert, linear algebra and its applications ; San Diego: Harcourt,

Brace, Jovanovich, Publishers, cl988. QA18458 1988; 3rd ed.; xii, 505 p.: ill.; 24 cm;

Many college texts on Linear Algebra may serve to substitute or augment the later reference.

MUSIC as implemented here, applies to data collected by an array of sensor elements where the
solution sought is the direction of arrival(s) (DOAs) of one or more signals incident on an array. The
signals may be of many types, such as communication, acoustic, and seismic signals, where the arrav
sensor elements are appropriate transducers for the application signal type. For communication signals
the array consists of antenna elements. In all applications the array geometry is designed to accomplish a
suitable spatial sampling of multiple signal wavefronts, at any snapshot in time.

The implementation here assumes a planar geometry, that is the signal source locations and sensor
array elements all lie in the same plane. The solution DOAs are azimuthal angles in degrees, relative to
the sensor array orientation. For application to communication signals, the array is modeled as an
arrangement of dipole elements oriented perpendicular to the plane (The center of the dipoles lay within
the plane). In all cases an array response calibration is provided. The array response calibration, termed
r^rX m^foId

J'.8
ives .me f"«y stead-state response as a vector for a single incident emitter at a given

DOA. The vector dimensional components are the outputs of the individual array elements. In principal,
tiie array rnarufo d u. a continuum of array response vectors corresponding to a continuum of possible
DOAs, that is 0 to 360 degrees. In practice, the provided array manifold is a matrix of column arrav
response vectors representing a closely spaced sampling of a continuous array manifold.

In general, the array manifold is a function of the signal frequencies. For the student MUSIC
implementation, the signal bandwidths are constrained to be much less than the array bandwidth. This
means that the phase differences observed between the individual array elements for snapshot data
vectors result for all practical purposes from only the spatial sampling and not from signal modulations.
Thus;ai single frequency array manifold serves. The carrier frequencies of incident signals are assumed to
be within the defined signal frequency channel.

5-16

The array calibration or manifold can be derived from an analytical model of a subject array. For the
student problem, a linear antenna array with uniformly spaced dipole elements is modeled. Often in
practice the array manifold results from a measurement calibration process. Calibration by measurement
is necessary because of "real-world" complexities that defy accurate modeling. Examples are array
imperfections, mutual coupling between array elements, and near-field scattering effects due to the array
platform and support structures. It is important to point out that the student MUSIC algorithm, can work
aeainst real-life array collected data as well as simulated data. Also, it matters not whether the provided
array manifold data results from analytic modeling or calibration measurements.

For the student MUSIC algorithm, the number of incident signals (K) is less than the number of array
elements (M). Furthermore, the modulations of the individual signals are such that they are uncorrelated.
In real situations, correlated incident waveforms can result from discrete multipath. However, this is
beyond the scope of a student MUSIC implementation. The student MUSIC algorithm can process data
from any size array and number of signals, as long as the number of signals is less than the array size.
However, the example data set was generated for an array of three elements. The use of three dimensions
makes easier the geometric interpretation of the linear algebra vector processing steps. Most people have
difficulty visualizing in dimensions greater than three.

The student MUSIC algorithm assumes that the noise experienced by the individual array elements
is independent Such noise is said to be spatially white. In practice noise can be spatially colored. In
communications applications, an example of spatially colored noise is urban/industrial electromagnetic
noise. The student MUSIC algorithm can be extended to deal with colored spatial noise. Other potential
extensions include 1) the estimation of additional parameters (e.g., elevation as well as azimuthal DOA);
2) correlated signals due to discrete multipath; and 3) signal separation beamforming and extraction of
individual signals. In short, the student MUSIC implementation is a serious signal processing building
block, that can be extended in its capability.

MUSIC is a "subspace" algorithm. The procedure is to partition the M-space into two orthogonal
complementary subspaces, a signal and a noise subspace. The solution signal directional vectors are the K
array manifold vectors that lie within or closest to the signal subspace. A suitable number, N of collected
snapshot data vectors are required to provide an adequate estimate of the spatial covariance matrix.
Computed eigenvalues of the covariance matrix are used to determine the number of signals, K. The
corresponding computed eigenvectors, returned as a matrix of column vectors, are an orthonormal basis
set for the M-space. Knowledge of the number of signals, K allows the column space of eigenvectors to be
partitioned into the complementary subspaces. A least mean squares projection approach is then used to
identify the K array manifold vectors that fit best to the signal subspace. These are the estimates of the
signal directional vectors, which in turn identify the DOAs.

There are other applications amenable to the MUSIC or subspace approach. MUSIC is useful for
spectral analysis of signals that are a mix of sinusoids and noise. Here, the data results from a set of
measurements from a taped delay line. The application is to identify the element signal frequencies,
amplitudes and phases.

In a broader context, MUSIC relates to factor analysis, a discipline which is applied to problems in
many fields, including psychology and economics. Here, the researcher seeks to identify a subset of most
significant factors or causes from a greater set (see Mardia, K.V., Kent, J.T., Bibby, J.M., Multivariate
Analysis, Academic Press, 1979).

5-17

AJ> DATA MODEL

A2.1 Measurement vectors

The data is in the form of a collection of measurement vectors, where each measurement vector is the
observed array output at a snapshot in time. The dimensions of a snapshot vector are outputs of the
individual array elements, of number M. The set of all conceivable measurement vectors exist in the M
dimensional space, CM, as do the array manifold vectors, a(a).

Any snapshot measurement vector can be expressed as the sum of two terms, a deterrninistic term
plus a noise term,

x(t) = A(o)s(t) + n(t)

where

s(t) = [si(t)
82t)

SK(0]

is a column vector of complex amplitudes of the K signals at time L The matrix,

A(a) ■ [a(cq) I a(a2) I • • • I atajc)]

is made up 0f column vectors which are respectively the signal directional vectors (specific array
manifold vectors) associated with the K incident signals. The noise vector,

n(t)-[ni(t)
n2t)

nM<t)l

is made up of the additive noise samples at each of the array elements. The noise is Gaussian and
uncorrelated between elements.

A2.2 Multiple Snapshot Collections

The data sets provided are multiple snapshot collections of N column vectors. N needs to be large
enough to provide for suitable estimates of a spatial covariance matrix. A collection is expressed as

X = A(a) S+V

where X is a M by N matrix of N column data snapshot vectors. S is a K by N matrix of column vectors
which are multi-signal samples at the N snapshot times. It is noted that the matrix product A(a) S
results in a matrix that is M by N. V is a M by N matrix of column vectors which are the N snapshots of
the M-dimensional noise samples.

5-18

A3 MEASUREMENT COVARIANCE MATRIX

The estimated spatial covariance matrix, assuming zero-mean signal and noise processes, is

N 1 1
RXX = ITT £{xnxn

H] - rrr XXH

n=l

Given an adequate data sample size, the spatial covariance matrix can be expressed as the sum of two
terms, that is

Rxx = w + o21

where W is the signal spatial covariance term, a2 I is the noise covariance term , and is I the identity
matrix. The noise covariance matrix is diagonal, as a result of uncorrelated Gaussian noise experienced by
the array elements. Furthermore, the noise power at each of the array elements is equal to a2. Thus, the
noise covariance matrix is of rank M; it is of full rank.

W, the signal spatial covariance matrix, is modeled as deterministic. This matrix is of rank K, the
number of uncorrelated incident signals. W is not of full rank and thus is singular. Rxx is of full rank as
a result of the noise matrix term.

A.4 EIGENANALYSIS

The eigenvalues of the matrix Rxx can in principal be obtained by solving

I RXX- XI I =0

for M roots (eigenvalues) Xj £ X2 £ £ XM £ 0. The fact that the eigenvalues are non-negative and real
follows from the fact that the covariance matrix is Hermitian. Equivalently, we must satisfy

RXX E » EA

where A = diag [X\ X2' • • XM) and E = [ei> I e2 I • • • I eM] is the column matrix of eigenvectors. Since
RXX is a Hermitian matrix, the set of all its eigenvectors provide an orthonormal basis for vector space
£M.

The problem now is that of partitioning this column space, E in to two complementary orthogonal
subspaces, one associated with the signal and the other with the noise. In so doing the number of signals,
NSIG equal to K, is defined. We start by noting that W is singular (not of full rank), so that its
determinant is equal to zero, i.e.,

IW I = lRxx-o-2II =0

We also note that from the definition of eigenvalues of Rxx (equation repeated from above) that

I Rxx- U I =0

Thus, at least one of the eigenvalues, X = o2, but which one? The Hermitian covariance matrix is positive-
definite, such that its eigenvalues are non-negative real numbers. This fact constrains

5-19

*min = ^M = <T
2

If this were not the case, then there may be some possible data collects where the minimum value, Xmin
is negative. But his can not be.

The eigenvector corresponding to Xmin (or vectors) is orthogonal to all other eigenvectors and hence
exists within the nullspace of the signal subspace. Thus, W e = 0 for all eigenvectors, e which are
orthogonal to the signal subspace. By definition then,

RXX e ■ o2I e ■ X e

Sr SV"0?86 aSS?dated eigenvalues and their corresponding eigenvectors. From this it is stated that all
the M-K eigenvalues corresponding to the noise subspace are equal to a2. The value of X^ = a2 is then
the estimate of the noise power or variance experienced by the individual array elements.

Since these are the M-K smallest eigenvalues of the spatial covariance matrix, the corresponding
eigenvectors are the set of column vectors that are the orthonormal basis vector set for the noise
subspace. The noise subspace then is,

EN = tek+l) I ek+2) I • • • I eM]

spanned by the eigenvectors corresponding to the eigenvalues, XK+1 aK+2i".j XM 2 0 The
signal subspace then associates with the remaining eigenvectors, that is

Es= [ei) I e2 I • • • I eic]

spanned by the eigenvectors corresponding to the eigenvalues, Xi * X2 Z • • • * Xv * 0 The two
subspacesENandEs are orthogonal and complementary.

To provide further enlightenment, the K eigenvalues ^ (all positive real numbers) of W are defined

lw- Tfcl l = lRxx-(7k+o2)ll =0

Thus, YJc + o2 ^ ^ K eigenvalues associated with the signal subspace. It is observed that they are
all larger then the eigenvalues associated with the noise subspace, that is larger then o2.

^SlS^^S?I^SMBER °F SIGNALS(NSIG) AND DETERMINATION OF THE SIGNAL

«HJ?
faCt th3t *!*? M:K ei?aivall,es of *e spatia» covariance matrix that associate with the noise

subspace are equal to the minimum eigenvalue and that the eigenvalues associated with the signal
subspace are all greater m value to the noise subspace values is the basis for determining K, that is the
number of uncorrelated signals termed NSIG. In the implemented MUSIC algorithm, NSIG iTdetermined
b^user interactive interpretation of a presented graph of the M eigenvalues of the spatial covariance

For instructive purposes, the interactive approach is suggested for the NSIG determination. An
extension to the student MUSIC would be an automatic thresholding means for estimation of NSIG

5-20

as

f
The Information Superhighway:

Still Under Construction

David W. Gurecki

Rome Catholic High School
800 Cypress St.

Rome, NY 13440

Final Report for:
High School Apprenticeship Program

Rome Laboratory

Sponsored by:
Air Force Office of Scientific Research

Boiling Air Force Base, DC
and

Rome Laboratory

August 1994

6-1

}

The Information Superhighway:
Still Under Construction

David W. Gurecki
Rome Catholic High School

Abstract

Advances in multimedia technology will greatly affect the future of computers. The "Information

Superhighway" is a term referring to the exchange of almost any type of information over a vast, world-wide super-

network of computers. This network exists today (commonly referred to as the Internet), and the technology to interface

video, audio, imagery, and data into computers also exists today. However, much of this technology is still in the

development stage, and there are problems that have to be resolved.

This report discribes some of these new areas of multimedia and communicating technology experimented

with, the problems which can arise, and some possible solutions to these problems. It covers two applications that were

developed during this period ("WEB-Link" and "ScanRes").

6-2

The Information Superhighway:
Still Under Construction

David W. Gurecki

Introduction

Recent advances in computer performance, video and audio processing, and telecommunications have

expanded the utility of computers. With Intel Pentium technology, PC computers are now capable of speeds up to 100

MHz. Video and sound are now being interfaced with computers. Scanning technology allows any printed image to be

digitized into raster format for use in computing. Most importantly, the ability to share all this multimedia information

has expanded exponentially through the growth of the Internet, a mass networking of billions of computers around the

world. However, at the current time, this "Information Superhighway" has several barriers which must be overcome.

Much of the technology and software available today has to be optimized and experimented with to determine its

usability.

The issues addressed for this project include an explanation of a number of these barriers:

1. the expansion of an existing office messaging system into a new, versatile information exchange environment

called the World Wide Web;

2. determining video recording and playback factors to optimize performance;

3. problems associated with the interdependability of hardware and software from several different developers;

4. the viability of video teleconferencing, and which software is best for what application;

5. determining the best resolution for scanned images to minimize distortions.

These problems, among many others, have to be resolved before the mass public can effectively benefit from

these advances. Technology must be made to work efficiently and consistently. Some solutions were found to these

problems identified above, but many other questions still have to be answered before the Information Superhighway

becomes a working reality.

6-3

The Rome Laboratory Video Bulletin Board originated as a project to improve communication of news and
events within a building. Initiated in 1993, this project involves the displaying of video messages, or "sequences" on TV
monitors throughout the workplace.

IW is the Interactive Virtual Video™ Software by V_Graph, Inc. used to display and create sequences for
the Video Bulletin Board.

6-4

The World Wide Web Information Exchange Environment

Traditionally, information has primarily been exchanged over the Internet through several text-based utilities

(i.e., File Transfer Protocol (FTP) and Gopher, a menu-based interface). These both allow transmission of files to

almost any location on the Internet, but are somewhat user-unfriendly since the user must employ multiple steps to see or

listen to multimedia information.

The World Wide Web is an increasingly popular information exchange environment. Unlike FTP or Gopher, it

operates in a graphics environment. It utilizes hyper-text linked files to display text, graphics, sound and animations

from anywhere over the Internet. The user can view graphics and hear sound simply by selecting a link object (a labeled

area on the screen that appears in blue). This is a much simpler, user-friendly method for selecting and transferring

multimedia information over the Internet. *

The advantages of the WEB environment and its increased usage at Rome Laboratory led to the idea to include

the Video Bulletin Board1 sequences in the WEB environment. This complicated task would involve capturing the

screens displayed, converting them to a WEB-compatible format, and transferring them to a WEB server that

automatically puts them on-line. The versatility of the WEB environment makes it possible for graphics to be easily

transferred to users' terminals, and made this endeavor a practical undertaking. This entire process would have to be

automated for ease of use and practical application. A special software application called WEBLink was developed for

this purpose. The following is a description of this development effort.

The best approach to adapting the Video Bulletin Board to the WEB environment was to incorporate both

image files (i.e., PCX files) and text exactly as they appear on the TV screens into the WEB. Consequently, a procedure

to capture the graphic screens was investigated. Although there are many external utilities that can capture graphics

screens and perform the function adequately, they could not be included in an automated process since a keypress is

required. Further research indicated that the IW2 software itself has built-in routines which can capture the screen to a

PCX file. When the IW command processor encounters a "SavePic" command in a sequence file, it captures the entire

graphic screen and saves it to a PCX-format image file on disk.

The SavePic command was tested, and found to work properly with some screens and return an error with

others. After contacting the author of the software, the problem was discovered to be an incompatibility with the video

board. The capture worked on 16-color (4 bit) screens, but not on 256-color (16 bit) screens. Therefore, the system had

to be reconfigured with a new video board that worked correctly with the IW software. This is an excellent example of

a type of problem when integrating software and hardware from different developers onto the Information Superhighway

computer systems.

Once a capturing method was determined, the RL Scheduler (the program which schedules the messages) had

to be modified for this effort. Previously, the RL Scheduler played each sequence once, and then looped back to the

beginning. However, for the automated process the Scheduler was modified to display each sequence only once, and

then quit.

The IW SavePic command saves the screen into PCX format. Unfortunately, PCX is not the ideal format for

viewing under the WEB environment, since Mosaic (a WEB interface program) was not designed to recognize PCX

files. Mosaic can, however, recognize images in the GIF image format. Since it is possible to convert image files from

PCX to GIF, a conversion program was acquired. The CVTGIF 1.5 utility, by John Bridges, was tested and proved to

be sufficient for converting PCX files into GIF format.

Once the files are created and converted, they have to be transferred to a WEB Server. This is accomplished

by using the FTP program to send all the captured screens from an IBM computer to a UNIX server. This program can

be set up to read in commands from a textfile. Since the files that need to be transferred will be different for each session,

this textfile can be modified each time to reflect the appropriate filenames.

In the schedule file, there is a description field containing a short title message about each sequence. When the

automated capture process runs, a list is created which contains (1) the description (from the schedule file) of each

sequence, and (2) which GIF files were created from each sequence. This list is also sent to the remote UNIX machine

with the GIF files. There, it is used to create a hypertext file. For each sequence, the title is listed and the screens that

6-5

were captured from that sequence are listed below it. Using Mosaic, the users can select whichever screen they wish to

view, and the corresponding GIF file will be sent to their computer and displayed.

A special program segment was developed for the UNIX machine to scan the GIF file directory once every

fifteen minutes. If it detects the presence of any GIF files, it will move them into the WEB directory where users can

download them, and revise the listing to reflect the new GIF files that were uploaded.

This WEBLink project was completed successfully and is now operational. It takes full advantage of the new

WEB environment's ability to transfer images quickly and easily to any user viewing the hypertext file. It's user-

friendliness and ease of use makes this environment likely to continue to be used in the future for transferring multimedia

information on a global basis.

Video Recording and Playback Experimentation

Technology exists today that allows interfacing a video camera to a computer and recording digitized animation

sequences from such a video source. When recording, there are many configurable options that will considerably effect

the quality, smoothness, and performance of the recorded video clip. The biggest obstacle to recording video is that as

the video is being received by the computer, it must be promptly written to disk. Generally, the less information that is

written to disk, the more video frames can be sampled per fixed length of time. Several factors affect this disk transfer

rate (the rate at which data is written to disk), and thus affect the frame rate (the rate at which the computer can capture

video frames). These factors include: the speed of the microprocessor, the dimensions of the window in which the video

is being recorded, the presence or non-presence of sound, the use of non-use of compression when writing the file to

disk, and the length of the video. The following illustrates how the above factors affect the disk rate and frame rate:

1. A faster microprocessor will allow for greater speed in getting the data to the disk itself, thus increasing the

disk rate.

2. A large recording window slows down the disk rate because there is more picture data that must be written

to disk. If the system is busy writing to disk, it can't be sampling image data at the same time, so a large recording

window limits the sampling rate. Conversely, a small recording window means less image data is recorded to disk, so

6-6

the system can spend more time sampling the incoming video. It can capture more frames per second since it can write

more frames to disk in less time.

If the sampling rate is too high for any size window, the computer will loose frames from the video since it has

to finish writing to disk while the video is still continuing. These factors create a threshold which had to be determined

for each of three sizes of recording windows, (see below)

3. Compressing the video information as it is being written to disk decreases the amount of information that

needs to be written. Using an algorithm such as Intel Indeo decreases the information stored for each frame, so more

frames can be sampled per second and the frame rate can be higher.

4. The presence of audio decreases the rate at which information can be written to disk because twice as much

information needs to be stored, as opposed to only video or only audio information.

5. Systems implementing a disk caching program have the ability to hold information in memory and write it to

disk at a later time when the system isn't as busy. This speeds up the disk rate on a short-term basis, because after the

buffer is filled, the disk rate goes back to normal again. For this reason, the length of the video becomes a factor. Very

brief video clips may be able to have higher frame sampling rates because the disk rate is still very high. However, even

when disk caching is employed, a long video clip at too high a frame rate will still cause parts of the video or sound to be

lost later on in the clip.

In general, a faster frame rate will create a much smoother video image. However, if the computer is trying to

sample sound and video at a rate faster than it can store it, video frames and audio will be lost, and the video will not be

presentable. Experiments were done to determine the best possible frame rates for each of three window sizes in order

that no frames or audio would be lost. Many video clips were recorded at varying lengths, frame rates, and window sizes

to determine both the relationships stated above, and the frame rate threshold at which it is practical to record video

clips.

These experiments used the Intel Video for Windows software and an Intel Indeo video capture board. The

compression method used was Intel Indeo R3.0. Each clip was recorded with a Pentium-60, compression on, with both

audio and video input. The table below shows the maximum frame rates at which no video and no sound was lost for

ALL video clips from 5-30 seconds long.

6-7

Resolution Maximum Frame Rate

320x240 pixels 8 frames/second

240x180 pixels 14 frames/second

160x120 pixels 29 frames/second

Note that these values cannot be completely accurate. These values are the threshold at which it generally

becomes possible to record a video clip without frame and audio loss. A higher frame rate may be achieved if the video

clip is only 5-10 seconds long without any frame loss. However, some video clips may not be as compressible as others,

and this can push the threshold to a lower value. If video or audio loss does occur at one of these frame rates, decreasing

the frame rate may be able to solve the problem.

Even after a video clip has been correctly recorded, there may sometimes be difficulty playing it back as it was

recorded. Sometimes sound can loose synchronization with the video, depending on how fast the computer can read

data from a disk and process the playback video and sound information. If the system processor isn't fast enough to load

and display 1 frame of both video and sound information at the same rate that it was recorded, there may be sound loss,

jumpiness, or loss in synchronization with the video. One way to compensate for this condition is to change the audio

interleave from every frame to every 5 frames (or higher). This causes the audio for the next 5 frames to be interleaved

in a single frame. Hence, the system doesn't have to worry about audio for another 5 frames, and can devote all its

resources to displaying the video correctly.

Despite all this optimization and operation on a top level PC, there is an inherent limit to the maximum quality

that can be attained. In the future, as computer systems become faster, this limit will become higher and higher until

very high quality video will be attainable.

6-8

Memory Conflicts and Optimization under MS-DOS

In order to support a full range of capabilities such as video capture, sound, scanning, Network connections,

and CD-ROM support, PC computers must have numerous expansion boards installed in the system. In addition, the

manufacturers of these components also require separate resident software device driver modules (TSRs3) to interface

the hardware to the system. The MS-DOS environment is limited as to the amount of directly addressable random

access memory (RAM) it has for TSR storage. While a PC may have 16 MB of RAM, much less than 1 MB is actually

available for TSRs. There also needs to be some space left for regular programs. Therefore, as the number of

multimedia system features increase, the amount of RAM memory required to properly operate them also increases.

Since there is a very limited space, having many multimedia features on a system can be as much of a hindrance as a

benefit.

The MS-DOS memory map is defined as follows:

0-640 k Executable programs and TSRs

640-1024 k System BIOS and Video ROM

1024-max k Extended memory

Normally, all TSR programs loaded would go in the 640k region. In some multimedia systems, that has left

memory available for regular programs at less than 300k, which is not enough to run some programs. The 640-1024k

region is used to store BIOS and Video ROM information, as well as drivers for other system components.

Occasionally, between some of these system regions, there is some free space available. The amount will vary with

computers, and there may be up to 200k empty space or more. Fortunately, there are utilities, both within the latest

versions of DOS and from third party companies, that can make use of these empty blocks of memory and use them to

store the TSR driver programs.

TSR - "Terminate and Stay Resident."

6-9

After having optimized several systems in the workplace, it was found that this process can become very

complicated. TSR programs tend to take up one size in memory when they execute, and then shrink to smaller size

when it stays resident. For example, if there is a 20k block of free memory, and a 18k TSR needs to be loaded, it may

seem obvious that it would fit in the 20k block. However, this TSRs initial size is 50k, which is larger than the

available memory block. Hence, it is not possible to fit the TSR in that particular memory region. Since this is an

example, situations like this have occurred very often, and it becomes a very time-consuming process to get all the

required TSRs loaded in the best fit they can.

In some cases, all the TSRs can be loaded into UMBs (Upper Memory Blocks) in the 640-1024k region of

memory. However, it is more typical that only a few of the TSRs fit in UMBs and the rest have to fit in regular system

memory, which greatly decreases the memory available to run programs. In these cases, the system is better off than it

would be without these memory managers. However, it may still be incapable of running some programs that it

otherwise could run without many multimedia features. This dilemma supports the postulate that advancing technology

for computers makes them worse instead of improving them. This is certainly not the intent of developers of multimedia

components, nor the desire of home computer owners and prospective multimedia customers.

Currently, MS-DOS is the most widely used operating system among home computer users. However, there

are alternatives to this operating environment. For example, Windows NT from Microsoft, OS/2 from KM, and the

upcoming Chicago from Microsoft are all PC operating systems which are not limited to under 1 MB storage for resident

drivers. If these operating systems become more widely used in the future, as they may, the problems caused by the

current memory restrictions of DOS will cease to exist.

Hopefully, these new operating systems will be capable of spreading throughout personal computer owners,

and multimedia will become a viable computer upgrade option. When this happens, the Information Superhighway can

more quickly extend into the homes of PC owners.

6-10

Video Teleconferencing

One relatively new capability which has become viable as a result of advances in technology is Video

Teleconferencing. This application makes use of video capture, audio capture, and high-speed network

communications to transmit live video and audio to another location.

Video teleconferencing has many uses. It can be used by doctors at home to make a quick decision in an

emergency situation, to view x-rays, or make a diagnosis on a medical condition. It can be used by businesses to

conference with distant branches, thus saving travel expenses and commuting time. Schools and universities will be

able to take advantage of professors teaching specialized topics or access libraries of information in many remote

locations. It is also useful simply for communicating between people, just as the telephones are used today.

There is a difference in the amount of quality required for different tasks. For example, a doctor looking at an

x-ray will require more resolution than simply two relatives talking with each other. At the present time, there are

several different applications which provide differing levels of quality.

One of these video image exchange systems was installed and evaluated during this work period. This

program, called "CU-SeeMe," is being developed at Cornell University by Tim Dorcey, Steve Edgar and Richard

Kennedy. This program runs over the Internet and has been written for Macintosh and Microsoft Windows. It currently

has video and sound sending and receiving capabilities for the Macintosh, but only video send and receive for Microsoft

Windows. The requirements for sending video are a camera and video capture board, and a connection to the Internet.

To receive video, only a connection to the Internet is required. When receiving a video picture of another person, the

image data appears in a4-bit grayscale window 160x120pixels in dimension. CU-SeeMe can do peer-to-peer

teleconferencing, as well as conferencing with up to 8 other people.

Since the picture is very small and isn't in color, the quality may not be suitable for some higher-level

applications, such as the doctor example. It is more practical for private use at home, however, it only runs on the

Internet, and most people have either a very slow or no Internet connections in their home. This program should gain

quick adoption for several reasons. It is still one of the first widely obtainable programs to emerge, since it can be

downloaded from anywhere on the Internet and is public domain software. The video camera only costs about $500 to

6-11

implement. Thus, although this program can't be used for high resolution tasks, it still may be adequate for business use

or eventually private use as a tele-video system in place of the telephone.

Another teleconferencing program reviewed is called ProShare, which is being developed by Intel Corporation.

This program currently runs only in the Microsoft Windows environment, and requires a specific communications media

called Integrated System Digital Network (ISDN) to communicate with other ProShare systems. This is a much more

versatile application. It allows for sharing not only color video and sound, but also other software applications. A

remote user can see and operate the same programs as the local user. It provides much more opportunity for sharing

data and productivity. This capability could be used by doctors and businesses, but because of the expense, it may be

out of range for private users.

As stated earlier, the teleconferencing sessions are currently limited to computers with ISDN connections.

ISDN is not very prevalent, thus limiting its wide-range use and making it expensive to operate. In the future, this

program will support Ethernet LANs and eventually regular phone line connections. At the present time, however, CU-

SeeMe provides more connectability, even though it has less capability.

These are only two examples of the many emerging systems, but they address some of the trade-offs that will

occur in the video teleconferencing environment. More expensive software packages will be able to provide high

quality and more features, but these won't be necessary for all people. Many users will be willing to settle for less

quality and less expense. This cost/benefit trade-off will most likely prevail until higher-end software can reach

affordability to the everyday user and compete with the lesser quality programs. This will occur when there is a larger

customer base and video teleconferencing on PCs becomes of age.

Scanner resolutions

When scanning images into a computer using any type of digital image scanner, an important factor in

producing a quality digital image is the resolution. If the resolution is unnecessarily high, processing the image will take

a large amount of time and impede flexible handling within applications. However, a low resolution will result in a loss

in quality of the image. Also, if a scanned image has to be resized using software functions, distortion will often occur

and there can be severe loss of picture quality. The best solution is to scan the image at the best possible resolution for

6-12

the desired image size on the target media. There are formulas which can be used to calculate this value. A special

Windows application called ScanRes was developed to provide a simple interface for calculating the resolution at which

to scan an image.

ScanRes runs in the Microsoft Windows 3.1 (or later) environment, and works best with a mouse. It was

developed with Microsoft Visual C++ for Windows 1.0 and takes approximately 1 MB of disk space. It can be executed

by adding it as an item into the Program manager, selecting "Run" from the "File" menu and entering the full path and

name to ScanRes, or double-clicking on the SCANRES.EXE file from within the Windows File Manager.

When ScanRes loads, a menu bar with four items appears. The "File" submenu only contains the "Exit"

command to exit the program. The "Picture" submenu contains the options "Image" and "Target". "Image" allows the

user to give the dimensions of the picture being scanned in. Selecting "Target" will allow the user to configure the target

properties where the scanned image will be put. The "Calculate" option on the menu bar will compute the optimum

scanning resolution for the entered data, and "About" gives information about the program. Following is an illustration

of the dialog box that appears when "Image" is selected from the "Picture" Menu:

Scanned Image Properties

Enter the dimensions of the scanned image in the boxes below.

Scan Image Width Scan Image Height

X in. in.

This window contains two boxes for entering data ("Scan Image Width" and "Scan Image Height") and two

buttons (Accept and Cancel). The user must type the width of the Scanned image in the "Scan Image Width" box and

the image's height in the "Scan Image Height" box, both in inches. Decimal values are accepted. After those values are

selected, the user may select "Accept" to store the values in memory, or "Cancel" to close this window without saving the

6-13

values to memory. Following is an illustration of the dialog box that appears when "Target" is selected from the

"Picture"menu:

Target Properties

Select the Target of the scanned image as either the Screen or a Printer, and enter its
appropriate characteristics.

O Printer

Image Width Image Height

O Screen O Specified Size:

O Actual Sire:

pixels
X

pixels

Screen Width

pixels
X

X

Screen Height

pixels

in. in.

Printer Halftone Resolution

»Pi

Print Width Print Height
X

in. in.

:S**>(vW;i«:Xyiwi«';j

WtWfMm
Cancel

In this dialog box, the user must select the target device and enter the properties of the target image. Each

circle that appears to the left of the labels "Screen", "Printer", "Specified Size", and "Actual Size" can become filled

when one is selected by the user. The user can select either Screen or Printer as a target device. (If Screen is selected

and the user selects Printer, the Screen button will become unfilled and the Printer button will be filled.)

If Screen is selected as the target device, the user must then select the size of the image that will appear on the

screen. "Specified Size" can be selected for an image of a certain height and width in pixels, or "Actual Size" for an

image on the screen that is the same size as the scanned image. For the "Specified Size" option, only the desired image

dimensions (in pixels) need to be entered. For "Actual Size," the user must type the current screen resolution (in pixels)

and the Height and Width of the screen measured in inches. (This determines the Screen's dots-per-inch resolution.)

If Printer is selected as the target device, the user must enter the printer's Printer Halftone Resolution, and the

final size of the image on the paper (in inches). The printer's Halftone Resolution can usually be found in the printer's

6-14

documentation. The final size of the image can usually be determined from the desktop publishing application, or just by

measuring a box on the page the same desired size as the scanned image. Since there isn't a direct, one-to-one

relationship between pixels and printer halftones, this equation will be an estimation of the best suitable resolution for

the printer. Experimenting with the halftone resolution value may yield better results.

Examples:

If a scanned image is to be used in a multimedia presentation, and must be no larger than 600 x 500 pixels, the

user would select "Screen," "Specified Size," and enter 600 in the "Image Width" box and 500 in the "Image Height"

box.

If a scanned image is to be displayed on a screen as the actual size of the picture to compare video resolutions,

the user would select "Screen," "Actual Size," enter the current resolution of the screen (such as 800x600), and enter the

physical dimensions of the viewing screen (such as 10.9 inches wide and 8.00 inches high).

If a scanned image is to be used in a newsletter publication in a box that is 3 inches wide and 3 inches deep, the

user would select "Printer," enter the halftone resolution (such as 133 lpi), and enter 3 in the Print Width and Print

Height boxes.

If, when entering values in either of these dialog boxes, any values are found to be out of range (such as "0"), a

message box will inform the user which value is invalid. The user will not be able to save the values to memory if any of

them are invalid.

When the values are successfully stored in memory, the user can choose to edit them again by selecting the

same dialog box from the menu bar. The stored values will appear in the editing fields, and the user may change them as

required.

After all the values have been entered, checked for validity, and stored in memory, the user can now calculate

the resolution for the entered data. The "Calculate" option from the menu bar will do this. When this function is

executed, the program checks to make sure all of the values have been entered correctly to prevent "divide by zero"

errors. Then, it plugs the values into the appropriate equation and displays the result. Following are the equations used

to calculate the appropriate scan resolution according to the selected target device:

6-15

Screen/Specified Size

 image width = scan resolution 1 image height = scan resolution 2
scanned image width scanned image height

(The value displayed is the lower of the two scan resolutions.)

Screen/Actual Size

greatest dimension of screen resolution = scan resolution
screen width (in inches)

Printer

printed image height = value 1 printed image width = value 2
scan image height scan image width

(whichever value is smaller) x halftone frequency x 2 = scan resolution

The value displayed to the user is the vertical and horizontal dots-per-inch resolution that the image should be

scanned at. If the target device is either a specified-size image on the screen or a printed image, the picture will be fit to

scale entirely within the specified region. For example, if there is a very long, narrow newspaper strip that will be put on

a screen image measuring 1024x768 pixels, the image will not be exactly 1024x768 pixels. It may be 1024 pixels wide

or 768 pixels high, but the other dimension will always be to scale with the width (or height) of the actual image.

Finally, the "About" option on the menu bar will display the author and version information for the program.

From the About dialog box, the user may also view the values in memory. This was included in the program for

debugging purposes.

6-16

Conclusion

The multimedia advances will change the way people live their lives. Communicating video, information, and

learning between locations around the world will be a reality. The potential for sharing of knowledge will increase, and

education will undoubtedly benefit. Computers will have the largest role that they've ever had in making the world a

better place.

However, before this can be achieved on a large scale, many complex and multifarious problems need to be

solved. This work period addressed only a few aspects of new technology individually. Multimedia systems will need

many of these components to work together. This will cause a great deal of hardware and software conflicts that will

impede the implementation of this fascinating new technology. Until these issues can be resolved and everything can

work together in unison, the Information Superhighway will still be under construction.

6-17

DEVELOPING A SOFTWARE
ENVIRONMENT FOR A
HIGH PERFORMANCE
SIGNAL PROCESSOR

Eric J. Havduk and Richard A. Schneible Jr.

Final report for
High School Apprenticeship Program

Rome Laboratory

Sponsored by:
Air Force Office of Scientific Research

Boiling Air Force Base, Washington. D.C.

and

Rome Laboratory

August 1994

7-1

DEVELOPING A SOFTWARE
ENVIRONMENT FOR A
HIGH PERFORMANCE
SIGNAL PROCESSOR

Eric J. Hayduk and Richard A. Schneible Jr.

Abstract

A software environment for the FPASP5 (Floating Point Application Specific Processor v 5.0), a high

performance signal processor, was developed. As an integral part of this development, the existing software was

evaluated. Much of the Microcode and Assembly language had already been written. Still, debugging was required

for all levels of the software environment. Further, function libraries had to be written for use by high level

language programmers. Debugging consisted of writing test programs in FPASP5 assembly language, assembling

them and simulating the programs on a VHSIC Hardware Description Language (VHDL) model of the FPASP5

processor. Results demonstrated that many tested instructions behaved properly and that several others contained

bugs which needed to be documented and corrected. When an instruction worked correctly, in many cases, a

function library had to be written. Tested instructions and constructed functions are discussed along with the

necessary skills to implement this project, problems, corrections, and future steps to complete the development.

7-2

DEVELOPING A SOFTWARE
ENVIRONMENT FOR A
HIGH PERFORMANCE
SIGNAL PROCESSOR

Eric J. Hayduk and Richard A. Schneible Jr.

Introduction

The Wafer Scale Signal Processor (WSSP) and FPASP5 software environment are being developed by the

Air Force Rome Laboratory. In recent years, a need has grown for computer processors that have the ability to

handle floating point calculations quickly and efficiently. At the same time, it is essential that these processors have

small size, low weight, and low power consumption in order to be useful in advanced signal processing applications

where these limitations exist.

The WSSP is an adaptable and highly efficient processor that meets these requirements. The fields of

signal processing, which involves the detection and tracking of both ground and airborne targets, and

supercomputing will benefit greatly from this innovation in technology. This innovation is a result of chip stacking,

a streamlined architecture design and hybrid wafer scale integration. Chip stacking involves thinning down the

backs of several chips and stacking them on top of one another to save space. Hybrid wafer scale integration is the

process of producing chips and then placing them on a wafer, edge to edge, with minimal spacing. The

improvements in memory packaging allow for a greater reduction in the size of the WSSP and better memory

organization.

The FPASP5 software environment incorporates RISC-like instructions including loads, stores, and simple

arithmetic operations. RISC (Reduced Instruction Set Computer) architecture utilizes simpler instructions to

increase performance. This occurs because compilers, which optimize programming code, almost always use

simpler assembly language instructions rather than more complex assembly language instructions. The FPASP5

software environment also incorporates critical high performance vector routines. The unique FPASP5 architecture

and these highly optimized routines allow the WSSP processor to handle vector operations more quickly and

efficiently than other signal processors. Function libraries had to be written around these vector commands for use

7-3

by high level language programmers.

In the process of completing this evaluation, several skills had to be learned. One of the authors, Eric J.

Hayduk, had an intermediate level understanding of the high level programming language C and exposure to

assembly language at the start of his tour, while the other author, Richard A. Schneible Jr., had neither. Since these

were necessary tools, two weeks were spent learning C. This programming skill was important to learn because it

provided a base of programming skills. After two weeks, Richard gained a basic understanding of the C language

and Eric had polished his skills. Then it was decided that it was time to learn assembly language. It took only a

couple of days for the authors to gain a general understanding of this language, but both learned more with each day

of their tours. Another skill that was imperative to have was the ability to use the VI text editor in the UNIX

environment. Eric had previously gained experience with the GNU EMACS text editor, but it was important for

him to also learn the VI text editor because it was more widely available. After a week of constant usage, the

authors had an operational understanding of this editor and its environment. Next, the authors had to learn binary,

octal, and hexadecimal notation in order to understand the output which came in these forms. Within a few days

both Eric and Richard had gained the necessary experience to work with these notations. Finally, it was necessary

to learn to work with commercial products such as WordPerfect, Microsoft Excel, and PowerPoint. The authors

learned how to effectively use these products while constructively utilizing them to document the evaluation of the

WSSP software environment.

Methodology and Procedures

By nature, the development of a software environment is a multi-step process. Much of this process had

already been completed. Past steps have included designing an accurate simulation of the WSSP processor, writing

the Microcode which supports the assembly language instructions, and writing an assembler which has the ability to

convert assembly language programs into machine language. When writing any sort of program, however, one

must remember that 40 to 60% of the time will be spent debugging.

The process of debugging had not been completed. This consisted of writing test programs, assembling

them, simulating them, and reviewing the output to see if the requested operation was correctly performed. The test

process began with simple arithmetic computations such as integer and floating point addition, multiplication, and

7-4

division. For each operation, values were loaded into several of the registers and output was directed into others.

The program was then assembled, that is translated into machine language1. If a problem arose at this point, it

usually meant that either the command was not yet implemented or the parameters were being passed incorrectly.

If, however, the program assembled correctly, it was then simulated. The simulator, a VHDL model of the FPASP5

processor, wrote output files that contained data for each clock cycle that was simulated. This data consisted of

register usage, the operation codes for the Microcode instruction executed during each clock cycle, and the status of

memory at each available address at the end of the simulation. If the output data matched projections, the output

was documented and the operation command was added to the list of working commands. On the other hand, if the

data did not match projections, other output such as memory dumps and car files were used to pinpoint the bug. As

soon as the bug was pinpointed and documented, the information was referred to whoever was in charge of writing

that particular piece of code.

The true advantage of the FPASP5 processor is in its ability to handle vector problems rapidly and with

accuracy. These operations required more complex tests as there was a larger possibly of bugs. An example of the

tested vector operations was CDOTSP. This command multiplied the individual complex elements of two vectors

and then added the results together, that is calculated the complex dot product of two input vectors. In order to

effectively test this command, vectors had to be designed with positive, negative, large, and small numbers. This

program, once written, was assembled and simulated. When the simulator was finished, the output register was

checked for the projected answer. In this case, it was found. So, we concluded that the command did indeed work.

In another case, however, HDOT_SP (Hermition dot product routine) was subjected to a similar test and failed. It's

output exactly matched the output from CDOT_SP. HDOTSP differs from CDOT_SP in that it takes the complex

conjugate of each complex element in the first input vector before calculating the dot product. HDOT_SP does use

the same Microcode as CDOTSP. From this, we concluded that a branch condition in the Microcode was not set

correctly. This bug was corrected, and the program retested before it was added to the list of working commands.

This procedure was followed for all instructions evaluated.

1 Computers only have the ability to execute these machine language instructions. Even a lower level assembly language such as
the FPASP5 must be translated into machine language in order to execute.

7-5

A second and equally important part of the development of the software environment was the construction

of function libraries in order to facilitate high level language programming. Some of the libraries had already been

written in the old assembly language. For these, it was simply necessary to translate the code to be consistent with a

new assembly language format. Many of the required changes were uncomplicated such as changing the comment

mark from ';' to '#'. Others were more difficult because certain declarations were necessary that weren't before, and

other declarations became unnecessary. For example, under the old assembler, symbols were defined using the

.data statement. Under the new assembler, .data was replaced by Ant, .float, and .double. These statements were

similar in structure and function to the old .data statement. Finally, bugs in the new language had to be pinpointed

and documented.

The process of debugging these preexisting libraries was essential to the completion of this project.

Debugging libraries was very similar to debugging assembly language test routines. The first step was to examine

the libraries for any errors in translation. For example, in the new assembly language format, a .global statement

needed to be added to make subroutines visible to the assembler. The command takes the name of the subroutine as

an argument and not the name of the file in which the subroutine is contained. Other simpler errors also occurred

involving the incorrect passing of parameters. Errors of these types had to be examined and corrected.

Once a function library assembled correctly, it was simulated on a VHDL model of the WSSP processor

and the simulation output was examined. Most of the existing libraries contained bugs which had to be located and

corrected. For example, the library CAXPY had to be examined and corrected. It correctly assembled, which

means that all of the assembly language commands contained in the library are called correctly. However, when it

was simulated, it appeared to go into an endless loop. To confirm this hypothesis, the A_CAR.DAT file was

examined. Table 1 is an edited version of the CAR file. Map numbers on the table refer to instructions that are

being executed at that particular nanosecond. The instructions stop executing and the simulation continues to run on

into infinity. This problem pointed to bugs in the Microcode instructions which support the assembly language

library. This information was turned over to the Microcode programmers.

7-6

Table 1: Edited CAR file for CAXPY library

TIME MAP
78.5 ns

(Initialization)

603.5 ns 1
628.5 ns
653.5 ns 16
678.5 ns
703.5 ns 16
728.5 ns
753.5 ns 16
778.5 ns
803.5 ns 16
828.5 ns
853.5 ns 16
878.5 ns
903.5 ns 16
928.5 ns
953.5 ns 16
978.5 ns
1003.5 ns 14
1028.5 ns
1053.5 ns 8
1078.5 ns
1103.5 ns
1128.5 ns 68
1153.5 ns
1178.5 ns 1
1203.5 ns
1228.5 ns
1253.5 ns 45
1278.5 ns
1303.5 ns
1328.5 ns
1353.5 ns
1378.5 ns
1403.5 ns
1428.5 ns
1453.5 ns
1478.5 ns
1503.5 ns
1528.5 ns
1553.5 ns
1578.5 ns

(to infinity)

7-7

Some of the library function calls had not yet been written even in the old assembly language. For these, it

was first necessary to test the main assembly language command around which the library was built. Once that had

been proven to work correctly, work on the library function began. The first step was to determine the algorithm

involved. The next step was to set up the control of the program, that is the jumps to and from the subroutines.

Then, registers had to be set aside to be filled with parameters passed to it by the programmer. Several of the

simpler library function required only that a single assembly language command be placed in the primary

subroutine. Others required that certain conditions be tested for and then dealt with separately. After the library

function was completed, a test shell was written around the function. This program was assembled and simulated in

order to test the function. If it worked as expected, it was documented and an entry was added to the manual of

library functions.

One of the most difficult libraries that had to be written was Single Precision Vector Plus Vector (SVVP),

which added together two vectors composed of real single precision numbers. This was difficult because there were

four different possibilities; each had to be dealt with by a separate subroutine. The simplest case occurred when the

vector had an even number of elements and was aligned on an eight byte margin. In this case, all that was required

was the calling of the assembly language VADD command and the returning, by means of a jump, to the main

program. When this case did not occur, at least one element had to be added manually. Even aligned vectors

required that the last element in each vector be added manually; odd unaligned, the first; and odd aligned, the first

and last. Manually addition was performed by loading the elements to be added from their respective memory

addresses into registers and using the FPS_A command to add them. Then, the answer was stored in the appropriate

memory address. After this library was completed, a entry was made in a manual of library functions. Table 2 is a

flow chart showing the way that SVVP would handle each case. Table 3 shows a graphical representation of the

four types of vectors handled by SVVP.

7-8

Table 2: SWP Algorithm Chart

START

ALIGNED;
PERFORM
VADD;
JUMP BACK
TO MAIN.

NOT ALIGNED;
MANUALLY ADD
LAST ELEMENT.
THEN, USE
VADD ON THE
REST. JUMP
BACK TO MAIN.

END T
END

NOT ALIGNED;
MANUALLY ADD
FIRST
ELEMENT.
THEN, USE
VADD ON THE
REST. JUMP
BACK TO MAIN.

I
END

ALIGNED;
MANUALLY ADD
FIRST AND
LAST ELEMETNS.
THEN, PREFORM
VADD ON THE
REST. JUMP
BACK TO MAIN

7-9
END

Table 3: Possible input vectors for SWP
From one side to the other in these boxes represents 8 bytes. Thus, each little box is 4 bytes or the size of a memory address.

1.0 2.0

3.0 4.0

5.0 6.0

7.0 8.0

This is an even an d aligned vector.

1.0

2.0 3.0

4.0 5.0

6.0 7.0

8.0

1.0 2.0

3.0 4.0

5.0 6.0

7.0

This is an odd and aligned vector.

1.0

2.0 3.0

4.0 5.0

6.0 7.0

This is an odd and unaligned vector.

This is an even and unaligned vector.
7-10

Results

As previously stated, many of the tested functions worked correctly. These statements did so because there

were no errors in the assembly language test routine or the supporting Microcode. Conversely, statements which

did not assemble or simulate correctly pointed to errors in the test routine and/or the supporting Microcode. Table 4

summarizes the results of the assembly language command tests. Table 5 summarizes the results of library routines

worked on by the authors.

7-11

Table 4: Results of Assembly Language Command Tests

Ucode reference

1. FPADDI

2. FPMULT

3. FPMI

4. FP MAC

5. MULTI

6. FPADDI2

7. FPMI2

8. MULT

9. BR R

10. JAL

11. FPMI SP

12. SRL LA

13. SH

14. S DPT

Command Tested

FPS_AI

FPD Al

FPS_M

FPS_MM

FPD M

FPD Ml

FPS_MAC

FPS_DMAC

FPD MAC

MULTI

FPS DAI

FPS DMI

MULT

BR R

JAL

FPS Ml

SLL

SRL

SRA

Comments

Assembled and simulated properly on new assembler only

Assembled and simulated properly

Assembled and simulated properly

Assembled and simulated properly

Assembled and simulated properly

Assembled and simulated properly

Assembled and simulated properly

Assembled and simulated properly

BROKE: did not simulate properly due to improperly
set FP* bit

Assembled and simulated properly

Assembled and simulated properly

Assembled and simulated properly

Assembled and simulated properly

Assembled and simulated properly

Assembled and simulated properly

Assembled and simulated properly

SH

SH (register relative)

S DPT

Assembled and simulated properly

Assembled and simulated properly

Assembled and simulated properly

Assembled and simulated properly

Assembled and simulated properly for upper registers only;
BROKE: when a store is called with a lower register

Assembles and simulates properly

7-12

Table 4: Results of Assembly Language Command Tests

15. SETFPBIT SETFPBIT Assembled and simulated properly

16. SBLI SLL!

SRLI

ROLI

RORI

Assembled and simulated properly except when 0 or any
multiple of 32 places were shifted. This occurs because the
masking value becomes zero and the barrel shifter won't
drive the C bus with a zero shift. Occurs as expected

Assembled and simulated properly except when 0 or any
multiple of 32 places were shifted. This occurs because the
masking value becomes zero and the barrel shifter won't
drive the C bus with a zero shift. Occurs as expected

Assembled and simulated properly except when 0 or any
multiple of 32 places were rotated. This occurs because the
masking value becomes zero and the barrel shifter won't
drive the C bus with a zero shift. Occurs as expected

Assembled and simulated properly except when 0 or any
multiple of 32 places were rotated. This occurs because the
masking value becomes zero and the barrel shifter won't
drive the C bus with a zero shift. Occurs as expected

17. SRAI SRAI Assembled and simulated properly except when 0 or any
multiple of 32 places were shifted. This occurs because the
masking value becomes zero and the barrel shifter won't
drive the C bus with a zero shift. Occurs as expected

18. MULTD MULTD Assembled and simulated properly

19. MULTDI MULTDI BROKE: did not simulate properly

20. CMULT SP CMULT SP Assembled and simulated properly

21.CDOT SP CDOT SP

HDOT SP

Assembled and simulated properly

Assembled and simulated properly

22. CDOT DP CDOT DP BROKE: assembled but did not simulate properly

23. CVSCALE SP CVSCALE BROKE: assembles but does not simulate properly

24. SP2DP SP2DP Assembled and simulated properly

25. written in
assembly language

DP2INT Assembled and simulated properly

26. INT2DP INT2DP BROKE: assembled but did not simulate properly

27.MAG SPV RM MAG SPV RM BROKE: assembles but simulates as an endless loop

7-13

Table 4: Results of Assembly Language Command Tests

28.VADDSUB

29.W MUL

30.MCPY

31. RDOT SP

VADD

W MUL

32. RDOT_SP_RM

33.SETFPR

34. SAVEFPR

MCPY

RDOT SP

RDOT SP RM

SETFPR

SAVEFPR

Assembled and simulated properly

Assembled and simulated properly

BROKE: assembles but does not simulate properly

BROKE: assembled but simulated as an endless loop

BROKE: assembled but incorrectly simulates for some test
cases. It appears that a tie to the lower registers is missing.
Assembled and simulated properly

Assembled and simulated properly

7-14

Table 5: Status of FPASP5 Libraries as of August 1994

| Sub-Routine Name Library Ucode Reference Comments
1. CDOTC_C BLAS HDOT.SP assembled and simulated

properly

2. CDOTU_PR BLAS CDOT_SP assembled and simulated
properly

3. SETFPMODE STANDARD SETFP assembled and simulated
properly

4. CWP VECTOR VADD assembled and simulated
properly

5. CWM VECTOR VSUB assembled and simulated
properly

6. DWP VECTOR VADD assembled and simulated
properly

7.ZWP VECTOR VADD assembled and simulated
properly

8. DWM VECTOR VSUB assembled and simulated
properly

9.ZWM VECTOR VSUB assembled and simulated
properly

10. SWP VECTOR VADD assembled and simulated
properly

11. SWM VECTOR VSUB assembled and simulated
properly

7-15

Conclusion

WSSP is a highly adaptable and efficient processor. The future of the WSSP project is dependent upon the

completion of this development. After numerous tests and corrections, most of the assembly language commands

are now without bugs. The process of debugging should be completed. With this accomplished, the task of writing

standard libraries should also be rapidly completed in order that higher level language programmers may work on

writing applications. This needs to be done quickly so that WSSP can take advantage of its excellent abilities in the

shortest amount of time.

7-16

Multi-Media- Creation and Uses
(Using the MacroMind Director

and the NCSA Mosaic)

Michael J. Panara

Rome Free Academy
500 Turin St.

Rome, NY 13440

Final Report for:
High School Apprentice Program

Rome Laboratory

Sponsered by:
Air Force Office of Scientific Research

Boiling Air Force Base, DC

and

Rome Laboratory

August 1994

9-1

Multi-Media- Creation and Uses
(Using the MacroMind Director

and the NCSA Mosaic)

Michael J. Panara
Rome Free Academy

Abstract

Multi-media and it's importance was studied. To do this the MacroMind

Director and the NCSA Mosaic applications were used. The Director was used to

create a production, and the Mosaic was used to investigate the different ways

in which multi-media could be used effectively to get information across to the

user. (Mosaic is a tool that is used to let the user "travel" on the World Wide

Web.)

9-2

Multi-Media-Creation and Uses
(Using the MacroMind Director

and the NCSA Mosaic)

Michael J. Panara

Introduction:

In recent years the use of multi-media has increased dramatically. It

has become one of the most popular ways to convey information to the user.

It's use of sound, graphics, and animation make the production more

interesting and easier for the audience to understand. The number of

applications for creating multi-media productions has grown rapidly in the

last few years. The one that was used for my presentation was the Director

application by MacroMind. Although the application is not the newest on the

market, it is probably the most effective and easiest to use.

To see the different ways in which multi-media could be used to get

information to the user, the NCSA Mosaic was used. This is an application

which allows the user to "travel" throughout the World Wide Web. It allows

the user to gather information from various sources throughout the entire

world.

Mosaic is the easiest way to travel through the World Wide Web (WWW)

because of it's use of hyperlinks. These are highlighted words which when

clicked on take the user to another location or document. It also allows the

user to move back through pages that have already been accessed. Finally, the

Mosaic also has a hot-list that allows the user to save the location of a

particular page. This saves the user time next time one chooses to try to find

9-3

the same information again.

To better learn about multi-media productions a presentation was

created using the MacroMind Director application. The production showed the

basic steps involved in making a production using this application. So as the

production went along more and more things were learned about the

application. The production became more and more involved until eventually

the end of the presentation was a fully inter-active multi-media production.

The presentation discussed the basics of the multi-media production, or

the essential elements to any multi-media production. These would be text,

sound , graphics, animation, and interactivity. It showed how these different

elements could be created as well as how these elements are added into the

production.

It also discussed the basics of creating the multi-media production,

using the Director application. This included instruction on the use of the

options of the Director including the cast, score, stage, paint and import

options. These options are used when putting together the basic elements into

a multi-media production.

9-4

All of the elements were created using the paint option or imported

from another source. (All sounds had to be imported, since the Director is not

capable of creating a sound.) The element was then placed into the cast. Each

element becomes a separate cast member and is given a different cast

number.

From here the cast member is placed onto the stage. To do this it must be

dragged from the cast window onto the stage using the mouse. Once the cast

member is placed onto the stage it is automatically placed into the score. This

keeps track of all of the cast members and their positions on the stage.

The score also has separate rows to keep other information. This

includes the rate at which the production will be played. Also different color

palettes can be chosen using the score. All sound is placed in a separate row,

unlike the rest of the other cast members.

The most important of these special command rows is the script. This

allows the user to type in simple commands for the production. For example

the color of the back-ground can be changed. The script also allows the user

to delay the production for a any amount of time and then start the production

back up again.

9-5

Interactivity is also added using the script. First a button is created

using the button tool. There are three types of buttons for the user to choose

from. After the button is created it is then added to the cast like any other cast

member. Then it is dragged onto the stage. Without adding the proper script

the button would only be just another graphic. When the proper commands

are added to the script the button then allows the viewer to decide which path

the production will take.

Sometimes the user may want to connect two related movies. Instead of

having to copy all of one movie and then transfer into the other movie, the

movies can be connected using the script. When the first movie ends, the

Director will automatically load the next movie. There is no limit to the amount

of movies that can be connected.

These are just the basic steps in creating a multi-media presentation.

There are also ways to make a transition from one screen smoothly by fading

one out and the next screen in. This and other little things can be done to

make the production look more professional.

The NCSA Mosaic makes great use of multi-media. All pages on the

Mosaic are done in multi-media. They contain text, graphics, sound, and

interactivity; some even contain animation.

9-6

The Mosaic itself does not actually use multi-media. The Mosaic is just a

tool that allows the user navigate through the World Wide Web. The pages that

the Mosaic allows the user to connect to are the elements that actually utilize

multi-media.

The Mosaic is an easy way to access information from around the world.

Any server that is connected to the World Wide Web anywhere in the world

can be accessed using the NCSA Mosaic.

It is a completely interactive network. The Mosaic utilizes links

known as hyperlinks. All the user has to do to change pages is to click the

mouse on one of the hi-lighted phrases. This is known as hyper-text.

Sometimes a graphic is surrounded by a border and the border is hi-lighted;

this is also a hyperlink.

The Mosaic can be used to access libraries from around the world. It also

can access various colleges and universities. This is especially useful for

doing reports or research, or to look through university catalogs to help with

making the decision about which college to attend.

Another feature that makes the Mosaic easy to use is it's ability to

navigate backward through documents that have already been accessed. Also

once the user goes back one can then go forward to the farthest point

accessed.

9-7

The uses of multi-media are ever increasing, as one can see. The Mosaic

is a fairly new application that makes full use of this new technology. It

shows how useful multi-media can be in presenting information, and how

much easier it is to understand information presented in this manner.

The Director shows how a fully interactive and very effective multi-

media presentation can be created with relative ease. One can make their

presentation much more interesting to the viewer by using this application.

Multi-media will continue to grow in the future. It's many uses make it

a valuable tool for anyone who is presenting a report or any other type of

information.

9-8

STUDY OF GLOBAL
HYPERMEDIA NETWORKS

Anne E. Pletl
Engineering Assistant For Software

Exercises And Verification
Griffiss Air Force Base (Rome Labs)

Rome Laboratory
Communications Network Branch

525 Brooks Road
GAFB NY 13441-4505

Final Report For:
Summer Research Program

Rome Laboratory

Sponsored By:
Air Force Office Of Scientific Research

Boiling Air Force Base

August 1994

10-1

STUDY OF GLOBAL
HYPERMEDIA NETWORKS

Anne E. Pletl
Rome Laboratory

Communications Networks Branch
Griffiss Air Force Base

Abstract

Global hypermedia networks which access hypermedia servers

(i.e. text, audio, and video) were studied and demonstrated

during my apprenticeship this summer at Rome Labs. In my

research I have found that through the use of these revolutionary

new projects, which are continually being upgraded, it is

possible to contact another database (server) anywhere else in

the world (given the proper address and hookup). Specifically, I

developed a hypermedia server describing work performed at the

Rome Lab Network Design Facility (NDF). I also updated several

files, which enable the NDF easier access to the available

information on the network. The following report will discuss my

involvement with these hypermedia networks, the hypermedia server

running on a SUN workstation, and explain their capabilities now,

as well as their potential for the future.

10-2

A STUDY OF GLOBAL
HYPERMEDIA NETWORKS

Anne E. Pletl

INTRODUCTION

Global hypermedia networks address the needs of government,

industry, and even the public, by providing a more accessible way

to get information. To understand how they operate you must

explore the meaning of hypermedia or hypertext that includes or

links to other forms of media. A basic understanding of the

project known as the World Wide Web, the Internet which it all

runs on, and the html language is also needed. The content of

this report further explains the global hypermedia program and

the work that is being done with it.

THE INTERNET

The Internet is made up of thousands of smaller regional

networks scattered throughout the globe. It is one massive

world-wide network of computers. The program most frequently

used on the Internet is the World-Wide Web due to is

accessibility and wide range of functions. It is important not

10-3

to confuse the two however. The Internet refers to the tangible

side of the global network, like the cables, switches, routers,

etc. Whereas the Web is more abstract, like the information

itself.

WORLD-WIDE WEB

The official description of the Web is a wide-area

hypermedia information retrieval initiative aiming to give

universal access to a large universe of documents , according to

Kevin Hughes of Honolulu Community College. Its discovery, in

March of 1989 was by Tim Berners-Lee of CERN, the European

Laboratory for particle physics. His main goal was to provide

the research community with an effective transportation system

for ideas to each other around the world (since CERN's members

are located in a number of countries). This project has provided

users on computer networks with a consistent means to access a

variety of media in a simplified fashion.

The Web runs under a client-server model (a client

interfaces with the user to request documents from the server).

Thousands of virtual transactions take place every hour

throughout the world.

Months after the Web's invention, the National Center for

Supercomputing Applications (NCSA) began a project to create an

interface in the World-Wide Web. Its original concern was to

10-4

help the scientific research community by producing widely

available, non-commercial software. What they created, a global

hypermedia network, exceeded all expectations. In 1993, a mouse

driven interface called Mosaic was introduced to the Internet

community, already with a small yet strong following.

MOSAIC

Mosaic is an Internet-based global hypermedia browser that

allows you to discover, retrieve, and display documents and data

from all over the Internet. Put simply, this is a program that

allows the user to interact with information, by accessing any

file in the Internet. Figure 1 shows the Mosaic "home page" I

developed for the NDF. The underlined text, which is displayed

in color on a computer screen, is actually hypertext. When the

user clicks on this hypertext, additional information about that

subject is provided. Thus a user can guickly "browse" through

information. The hypertext can also be information in the form

of pictures, video, and audio clips.

10-5

Figure 1,

C3 BggggflaaBgfflSSHBttSüliiB^ "

Network Design Facility
muuuuti Mmmmmmmmmmmmmmma

* The Network Design Facility performs research, development, and testing
of network architectures, protocols, application, and management.
Resources include:

• Asynchronous Transfer Mode (ATM) testbed
which incorporates the Fore Systems and GTE ATM
switches, ROMENET, a packet switched network composed
of BBN C-30 and C-3 packet switches, and COCONET, an
internetwork of various switching technologies. These
networking capabilities are integrated into an internetworked
environment with access to the Defense Simulation Internet.

9 Joint Advanced Development Environment (JADE)

»NYNet
an ATM based network developed in cooperation with
industry and academia. The facility also includes the Network
Performance Assessment Environment which provides
network management capabilities for all of the resources, and
an Error Injector Unit which allows emulation of a channel's
error characteristics, and allows for testing of network
topologies and protocols over disadvantaged links.

• ATM Hardware

• GTE SPANet ATM Hardware.

10-6

THE HYPERTEXT MARKUP LANGUAGE (HTML)

The standard language the Web uses for creating and

recognizing hypermedia documents, like Mosaic, is the hypertext

markup language (html)(Figure 2).

Figure 2

<TITLE>NDF</TITLE>
<PRE>

<P>

<H2>Network Design Facility</H2>

</PRE>
<P>

The Network Design Facility
parforms research, davalopmant, and tasting of

network architectures, protocols, application, and management. Rasourcoa
includa:

<IMG SRC-"http://166.101.10.104/graanball.gif"XA HREF-"http://166.101.10.104/
Asynchronous Transfer Mode (ATM)' testbed
which incorporates
the Fore Systems and GTE ATM switches, ROMENET, a packet switched network
composed of BBN C-30 and C-3 packet switches, and COCONET, an internetwork
of various switching technologiea. These networking capabilities are
integrated into an internetworked environment with access to the Defense
Simulation Internet.

<P>
<IMG SRO"http://166.101.10.104/greenball.gifXA HREF-"http://16«.101.10.104/
Joint Advanced Development Environment (JADE)
<P>
<IMG SRC-"http://166.101.10.104/greenball.gif"XA HRET-"http://16«. 101.10.104/1
NYNet

an ATM based network developed in cooperation with industry and
academia. The facility also includes the Network Performance Assessment
Environment which provides network management capabilities for all of the
resources, and an Error Injector Unit which allows emulation of a
channel's error characteristics, and allows for testing of network
topologies and protocols over disadvantaged links.</ULX/UL>
<P>
<IMG SRC-"http://166.101.10.104/greenball.gif"XA HRET--http://16«.101.10.104/
ATM Hardware
<P>
<IMG SRC--http://166.101.10.104/greenball.gif"XA HRET--http://16«.101.10.104/
GTE SPANet ATM Hardware

10-7

It uses Uniform Resource Locators (URLs) to represent almost

every file connected to the network (Figure 3).

.Figure 3

http://l66.l01.l0.104/ATMTestbed.html

The first part of the URL http, (HyperText Transmission

Protocol), is the standard language that the World-Wide Web

clients and servers use to communicate. The next part is the

address and the last part specifies the file at that address that

is trying to be accessed (usually ends with the suffix .html).

COMPLICATIONS

As with all computer programs, several problems arose. The

main problem was trying to incorporate pictures into html

language and the Mosaic program. The program would not accept

any pictures unless they were in the proper format. In this case

they were gifs which is a Graphic Interchange Format. Figure 4

shows html code which points to the Command, Control, and

Communicate Directorate gif shown in figure 1.

Figure 4

<IM6 SRC=»http://i66.101.lo.l04/c3-home.gif">

10-8

Another problem that arose with the pictures was that In

order to insert them into the Mosaic program, they all had to be

.gif files. The problem was that all the pictures available were

not in that format (e.g. tiff, xbm, wpg) . I alleviated that

problem by creating a .gif file and saved the other format into

that file. It was then a .gif file and could be run on Mosaic.

The final complication I encountered was the actual text.

That too had to be in the correct format (Figure 5) . One type

would create a problem and not allow the program to be accessed

in Mosaic.

Figure 5

Asynchronous Transfer Mode (ATM) Testbed

(In the figure above the Asynchronous Transfer Mode (ATM) Testbed

would be what was seen on the Mosaic screen.)

CONCLUSION

There are many benefits to using global hypermedia networks.

It allows the user to contact any file within the Internet. With

the new technology out today, these hypermedia projects are the

wave of the future, part of the information super highway.

I envision in a few years we will have the capabilities to

10-9

contact anywhere else in the world for any kind or information.

Classes will be able to be conducted in foreign languages, and

across oceans. Businesses will be able to contact their foreign

counterparts to improve enterprise. Governments will be able to

communicate with each other without having to hassle with complex

forms. And scientific research will be available to anyone with

the know-how to obtain it. I feel that within the next few

years, libraries will be obsolete because the information will be

at everyone's fingertips.

Great strides are being taken every day due to the use of

the hypermedia project. The research community can only benefit

from this global hypermedia project and the public will in turn

be affected. Maybe disease will be decreased, or famine. Once

the knowledge of this project is more publicized, I feel we can

begin to challenge ourselves in ways not thought possible ten

years ago.

10-10

WORKS CITED

Hughes, Kevin. Entertaining The World-Wid Web; A Guide To

Cyberspace. Honolulu Community College, (c)October

1993.

Itano, Wayne M. Getting Started On Mosaic . Optics and

Photonics News (c)June 1994 p48.

McCarthy, Shawn P. What Direction Will Mosaic Take?

Government Computer News (c)June 13, 1994 p80.

McCarthy, Shawn P. MacWeb challenges Mosaic As Freeware

For Internet". Government Computer News (c)July 25,

1994 p61.

Vaughan-Nichols, Steven J. How To Glue Together Mosaic .

Government Computer News ; Technology Report

(c)July 18, 1994 pp. 33, 36-37.

10-11

DEVELOPING A SOFTWARE
ENVIRONMENT FOR A
HIGH PERFORMANCE
SIGNAL PROCESSOR

Eric J. Hayduk and Richard A. Schneible Jr.

Final report for
High School Apprenticeship Program

Rome Laboratory

Sponsored by:
Air Force Office of Scientific Research

Boiling Air Force Base, Washington. D.C.

and

Rome Laboratory

August 1994

11-1

DEVELOPING A SOFTWARE
ENVIRONMENT FOR A
HIGH PERFORMANCE
SIGNAL PROCESSOR

Eric J. Hayduk and Richard A. Schneible Jr.

Abstract

A software environment for the FPASP5 (Floating Point Application Specific Processor v 5.0), a high

performance signal processor, was developed. As an integral part of this development, the existing software was

evaluated. Much of the Microcode and Assembly language had already been written. Still, debugging was required

for all levels of the software environment. Further, function libraries had to be written for use by high level

language programmers. Debugging consisted of writing test programs in FPASP5 assembly language, assembling

them and simulating the programs on a VHSIC Hardware Description Language (VHDL) model of the FPASP5

processor. Results demonstrated that many tested instructions behaved properly and that several others contained

bugs which needed to be documented and corrected. When an instruction worked correctly, in many cases, a

function library had to be written. Tested instructions and constructed functions are discussed along with the

necessary skills to implement this project, problems, corrections, and future steps to complete the development.

11-2

DEVELOPING A SOFTWARE
ENVIRONMENT FOR A
HIGH PERFORMANCE
SIGNAL PROCESSOR

Eric J. Hayduk and Richard A. Schneible Jr.

Introduction

The Wafer Scale Signal Processor (WSSP) and FPASP5 software environment are being developed by the

Air Force Rome Laboratory. In recent years, a need has grown for computer processors that have the ability to

handle floating point calculations quickly and efficiently. At the same time, it is essential that these processors have

small size, low weight, and low power consumption in order to be useful in advanced signal processing applications

where these limitations exist.

The WSSP is an adaptable and highly efficient processor that meets these requirements. The fields of

signal processing, which involves the detection and tracking of both ground and airborne targets, and

supercomputing will benefit greatly from this innovation in technology. This innovation is a result of chip stacking,

a streamlined architecture design and hybrid wafer scale integration. Chip stacking involves thinning down the

backs of several chips and stacking them on top of one another to save space. Hybrid wafer scale integration is the

process of producing chips and then placing them on a wafer, edge to edge, with minimal spacing. The

improvements in memory packaging allow for a greater reduction in the size of the WSSP and better memory

organization.

The FPASP5 software environment incorporates RISC-like instructions including loads, stores, and simple

arithmetic operations. RISC (Reduced Instruction Set Computer) architecture utilizes simpler instructions to

increase performance. This occurs because compilers, which optimize programming code, almost always use

simpler assembly language instructions rather than more complex assembly language instructions. The FPASP5

software environment also incorporates critical high performance vector routines. The unique FPASP5 architecture

and these highly optimized routines allow the WSSP processor to handle vector operations more quickly and

efficiently than other signal processors. Function libraries had to be written around these vector commands for use

11-3

by high level language programmers.

In the process of completing this evaluation, several skills had to be learned. One of the authors, Eric J.

Hayduk, had an intermediate level understanding of the high level programming language C and exposure to

assembly language at the start of his tour, while the other author, Richard A. Schneible Jr., had neither. Since these

were necessary tools, two weeks were spent learning C. This programming skill was important to learn because it

provided a base of programming skills. After two weeks, Richard gained a basic understanding of the C language

and Eric had polished his skills. Then it was decided that it was time to learn assembly language. It took only a

couple of days for the authors to gain a general understanding of this language, but both learned more with each day

of their tours. Another skill that was imperative to have was the ability to use the VI text editor in the UNIX

environment. Eric had previously gained experience with the GNU EMACS text editor, but it was important for

him to also learn the VI text editor because it was more widely available. After a week of constant usage, the

authors had an operational understanding of this editor and its environment. Next, the authors had to learn binary,

octal, and hexadecimal notation in order to understand the output which came in these forms. Within a few days

both Eric and Richard had gained the necessary experience to work with these notations. Finally, it was necessary

to learn to work with commercial products such as WordPerfect, Microsoft Excel, and PowerPoint. The authors

learned how to effectively use these products while constructively utilizing them to document the evaluation of the

WSSP software environment.

Methodology and Procedures

By nature, the development of a software environment is a multi-step process. Much of this process had

already been completed. Past steps have included designing an accurate simulation of the WSSP processor, writing

the Microcode which supports the assembly language instructions, and writing an assembler which has the ability to

convert assembly language programs into machine language. When writing any sort of program, however, one

must remember that 40 to 60% of the time will be spent debugging.

The process of debugging had not been completed. This consisted of writing test programs, assembling

them, simulating them, and reviewing the output to see if the requested operation was correctly performed. The test

process began with simple arithmetic computations such as integer and floating point addition, multiplication, and

11-4

division. For each operation, values were loaded into several of the registers and output was directed into others.

The program was then assembled, that is translated into machine language1. If a problem arose at this point, it

usually meant that either the command was not yet implemented or the parameters were being passed incorrectly.

If, however, the program assembled correctly, it was then simulated. The simulator, a VHDL model of the FPASP5

processor, wrote output files that contained data for each clock cycle that was simulated. This data consisted of

register usage, the operation codes for the Microcode instruction executed during each clock cycle, and the status of

memory at each available address at the end of the simulation. If the output data matched projections, the output

was documented and the operation command was added to the list of working commands. On the other hand, if the

data did not match projections, other output such as memory dumps and car files were used to pinpoint the bug. As

soon as the bug was pinpointed and documented, the information was referred to whoever was in charge of writing

that particular piece of code.

The true advantage of the FPASP5 processor is in its ability to handle vector problems rapidly and with

accuracy. These operations required more complex tests as there was a larger possibly of bugs. An example of the

tested vector operations was CDOT_SP. This command multiplied the individual complex elements of two vectors

and then added the results together, that is calculated the complex dot product of two input vectors. In order to

effectively test this command, vectors had to be designed with positive, negative, large, and small numbers. This

program, once written, was assembled and simulated. When the simulator was finished, the output register was

checked for the projected answer. In this case, it was found. So, we concluded that the command did indeed work.

In another case, however, HDOT_SP (Hermition dot product routine) was subjected to a similar test and failed. It's

output exactly matched the output from CDOT_SP. HDOT_SP differs from CDOT_SP in that it takes the complex

conjugate of each complex element in the first input vector before calculating the dot product. HDOTSP does use

the same Microcode as CDOT_SP. From this, we concluded that a branch condition in the Microcode was not set

correctly. This bug was corrected, and the program retested before it was added to the list of working commands.

This procedure was followed for all instructions evaluated.

' Computers only have the ability to execute these machine language instructions. Even a lower level assembly language such as
the FPASP5 must be translated into machine language in order to execute.

11-5

A second and equally important part of the development of the software environment was the construction

of function libraries in order to facilitate high level language programming. Some of the libraries had already been

written in the old assembly language. For these, it was simply necessary to translate the code to be consistent with a

new assembly language format. Many of the required changes were uncomplicated such as changing the comment

mark from ';' to '#'. Others were more difficult because certain declarations were necessary that weren't before, and

other declarations became unnecessary. For example, under the old assembler, symbols were defined using the

.data statement. Under the new assembler, .data was replaced by. int, .float, and .double. These statements were

similar in structure and function to the old .data statement. Finally, bugs in the new language had to be pinpointed

and documented.

The process of debugging these preexisting libraries was essential to the completion of this project.

Debugging libraries was very similar to debugging assembly language test routines. The first step was to examine

the libraries for any errors in translation. For example, in the new assembly language format, a .global statement

needed to be added to make subroutines visible to the assembler. The command takes the name of the subroutine as

an argument and not the name of the file in which the subroutine is contained. Other simpler errors also occurred

involving the incorrect passing of parameters. Errors of these types had to be examined and corrected.

Once a function library assembled correctly, it was simulated on a VHDL model of the WSSP processor

and the simulation output was examined. Most of the existing libraries contained bugs which had to be located and

corrected. For example, the library CAXPY had to be examined and corrected. It correctly assembled, which

means that all of the assembly language commands contained in the library are called correctly. However, when it

was simulated, it appeared to go into an endless loop. To confirm this hypothesis, the A_CAR.DAT file was

examined. Table 1 is an edited version of the CAR file. Map numbers on the table refer to instructions that are

being executed at that particular nanosecond. The instructions stop executing and the simulation continues to run on

into infinity. This problem pointed to bugs in the Microcode instructions which support the assembly language

library. This information was turned over to the Microcode programmers.

11-6

Table 1: Edited CAR file for CAXPY library

TIME MAP
78.5 ns

(Initialization)

603.5 ns l
628.5 ns
653.5 ns 16
678.5 ns
703.5 ns 16
728.5 ns
753.5 ns 16
778.5 ns
803.5 ns 16
828.5 ns
853.5 ns 16
878.5 ns
903.5 ns 16
928.5 ns
953.5 ns 16
978.5 ns
1003.5 ns 14
1028.5 ns
1053.5 ns 8
1078.5 ns
1103.5 ns
1128.5 ns 68
1153.5 ns
1178.5 ns 1
1203.5 ns
1228.5 ns
1253.5 ns 45
1278.5 ns
1303.5 ns
1328.5 ns
1353.5 ns
1378.5 ns
1403.5 ns
1428.5 ns
1453.5 ns
1478.5 ns
1503.5 ns
1528.5 ns
1553.5 ns
1578.5 ns

. (to infinity)

11-7

Some of the library function calls had not yet been written even in the old assembly language. For these, it

was first necessary to test the main assembly language command around which the library was built. Once that had

been proven to work correctly, work on the library function began. The first step was to determine the algorithm

involved. The next step was to set up the control of the program, that is the jumps to and from the subroutines.

Then, registers had to be set aside to be filled with parameters passed to it by the programmer. Several of the

simpler library function required only that a single assembly language command be placed in the primary

subroutine. Others required that certain conditions be tested for and then dealt with separately. After the library

function was completed, a test shell was written around the function. This program was assembled and simulated in

order to test the function. If it worked as expected, it was documented and an entry was added to the manual of

library functions.

One of the most difficult libraries that had to be written was Single Precision Vector Plus Vector (SVVP),

which added together two vectors composed of real single precision numbers. This was difficult because there were

four different possibilities; each had to be dealt with by a separate subroutine. The simplest case occurred when the

vector had an even number of elements and was aligned on an eight byte margin. In this case, all that was required

was the calling of the assembly language VADD command and the returning, by means of a jump, to the main

program. When this case did not occur, at least one element had to be added manually. Even aligned vectors

required that the last element in each vector be added manually; odd unaligned, the first; and odd aligned, the first

and last. Manually addition was performed by loading the elements to be added from their respective memory

addresses into registers and using the FPS_A command to add them. Then, the answer was stored in the appropriate

memory address. After this library was completed, a entry was made in a manual of library functions. Table 2 is a

flow chart showing the way that SVVP would handle each case. Table 3 shows a graphical representation of the

four types of vectors handled by SVVP.

11-8

Table 2: SWP Algorithm Chart

START

ALIGNED;
PERFORM
VADD;
JUMP BACK
TO MAIN.

NOT ALIGNED;
MANUALLY ADD
LAST ELEMENT
THEN, USE
VADD ON THE
REST JUMP
BACK TO MAIN.

END I
END

NOT ALIGNED;
MANUALLY ADD
FIRST
ELEMENT
THEN, USE
VADD ON THE
REST. JUMP
BACK TO MAIN.

ALIGNED;
MANUALLY ADD
FIRST AND
LAST ELEMETNS.
THEN, PREFORM
VADD ON THE
REST. JUMP
BACK TO MAIN

END

END

11-9

Table 3: Possible input vectors for SWP
From one side to the other in these boxes represents 8 bytes. Thus, each little box is 4 bytes or the size of a memory address.

1.0

3.0

5.0

7.0

2.0

4.0

6.0

8.0

This is an even and aligned vector.

1.0 2.0

3.0 4.0

5.0 6.0

7.0

This is an odd and aligned vector.

1.0

2.0 3.0

4.0 5.0

6.0 7.0

8.0

1.0

2.0 3.0

4.0 5.0

6.0 7.0

This is an odd and unaligned vector.

This is an even and unaligned vector.

11-10

Results

As previously stated, many of the tested functions worked correctly. These statements did so because there

were no errors in the assembly language test routine or the supporting Microcode. Conversely, statements which

did not assemble or simulate correctly pointed to errors in the test routine and/or the supporting Microcode. Table 4

summarizes the results of the assembly language command tests. Table 5 summarizes the results of library routines

worked on by the authors.

11-11

Table 4: Results of Assembly Language Command Tests

I Ucode reference Command Tested Comments .

1.FPADDI FPS_AI Assembled and simulated properly on new assembler only

FPD_AI Assembled and simulated properly

2. FPMULT FPS_M AssemDled and simulated property

FPS_MM Assembled and simulated properly

FPD_M Assembled and simulated properly

3. FPMI FPD_MI Assembled and simulated properly

4. FP_MAC FPS_MAC Assemoled and simulated properly

FPS_DMAC Assembled and simulated property

FPD_MAC BROKE: did not simulate properly due to improperly
set FP* bit

5. MULTI MULTI AssemDled and simulated properly

6. FPADDI2 FPS_DAI AssemDled and simulated properly

7. FPMI2 FPS_DMI Assembled and simulated properly

8. MULT MULT Assembled and simulated properly

9. BR_R BR_R AssemDled and simulated properly

10. JAL JAL Assembled and simulated propeny

11. FPMI_SP FPS_MI Assembled and simulated property

12. SRL_LA SLL Assembled and simulated propeny

SRL Assembled and simulated properly

SRA Assembled and simulated properly

13. SH SH Assembled and simulated properly

SH (register relative) Assembled and simulated properly for upper registers only;
BROKE: when a store is called with a lower register

14. S_DPT S_DPT Assembles and simulates properly

11-12

Table 4: Results of Assembly Language Command Tests

15. SETFPBIT

16. SBLI

SETFPBIT

SLLI

SRU

ROLI

RORI

17. SRAI SRAI

18. MULTD

19. MULTDI

20. CMULT SP

MULTD

MULTDI

CMULT SP

21. CDOT SP

22. CDOT DP

23. CVSCALE SP

24. SP2DP

CDOT_SP

HDOT SP

CDOT DP

CVSCALE

SP2DP

25. written in
assembly language
26. INT2DP

27.MAG SPV RM

DP2INT

INT2DP

MAG SPV RM

Assembled and simulated properly

Assembled and simulated properly except when 0 or any
multiple of 32 places were shifted. This occurs because the
masking value becomes zero and the barrel shifter won't
drive the C bus with a zero shift. Occurs as expected

Assembled and simulated properly except when 0 or any
multiple of 32 places were shifted. This occurs because the
masking value becomes zero and the barrel shifter won't
drive the C bus with a zero shift. Occurs as expected

Assembled and simulated properly except when 0 or any
multiple of 32 places were rotated. This occurs because the
masking value becomes zero and the barrel shifter won't
drive the C bus with a zero shift. Occurs as expected

Assembled and simulated properly except when 0 or any
multiple of 32 places were rotated. This occurs because the
masking value becomes zero and the barrel shifter won't
drive the C bus with a zero shift. Occurs as expected

Assembled and simulated properly except when 0 or any
multiple of 32 places were shifted. This occurs because the
masking value becomes zero and the barrel shifter won't
drive the C bus with a zero shift. Occurs as expected

Assembled and simulated properly

BROKE: did not simulate properly

Assembled and simulated properly

Assembled and simulated properly

Assembled and simulated properly

BROKE: assembled but did not simulate properly

BROKE: assembles but does not simulate properly

Assembled and simulated properly

Assembled and simulated properly

BROKE: assembled but did not simulate properly

BROKE: assembles but simulates as an endless loop

11-13

Table 4: Results of Assembly Language Command Tests

28.VADDSUB VADD Assembled and simulated properly

29.W_MUL W_MUL Assembled and simulated properly

30.MCPY MCPY BROKE: assembles but does not simulate properly

31. RDOT_SP RDOT_SP BROKE: assembled but simulated as an endless loop

32. RDOT_SP_RM RDOT_SP_RM BROKE: assembled but incorrectly simulates for some test
cases. It appears that a tie to the lower registers is missing.

33.SETFPR SETFPR Assembled and simulated properly

34. SAVEFPR SAVEFPR Assembled and simulated properly

11-14

Table 5: Status of FPASP5 Libraries as of August 1994

1 Sub-Routine Name Library Ucode Reference Comments
1.CDOTC_C BLAS HDOT_SP assembled and simulated

properly

2. CDOTU_PR BLAS CDOT_SP assembled and simulated
properly

3. SETFPMODE STANDARD SETFP assembled and simulated
properly

4. CWP VECTOR VADD assembled and simulated
properly

5.CWM VECTOR VSUB assembled and simulated
properly

6. DWP VECTOR VADD assembled and simulated
properly

7. ZWP VECTOR VADD assembled and simulated
properly

8. DWM VECTOR VSUB assembled and simulated
properly

9. ZWM VECTOR VSUB assembled and simulated
properly

10. SWP VECTOR VADD assembled and simulated
properly

11.SWM VECTOR VSUB assembled and simulated
properly

11-15

Conclusion

WSSP is a highly adaptable and efficient processor. The future of the WSSP project is dependent upon the

completion of this development. After numerous tests and corrections, most of the assembly language commands

are now without bugs. The process of debugging should be completed. With this accomplished, the task of writing

standard libraries should also be rapidly completed in order that higher level language programmers may work on

writing applications. This needs to be done quickly so that WSSP can take advantage of its excellent abilities in the

shortest amount of time.

11-16

ADESH as a Sample Generator for mdem

Nathan B. Terry

Clinton Sr. High School
Chenengo Ave.

Clinton, N.Y. 13323

Final Report for:
High School Apprentice Program

Rome Laboratory

Sponsored by:
Air Force Office of Scientific Research

Boiling Air force Base, DC

and

Rome Laboratory

August 1994

12-1

ADESH as a Sample Generator for mdem

Nathan B. Terry
Clinton Sr. High School

Abstract

ADESH (Atomistic DEfect Simulation Handler), developed by CASA (Center for

Simulations and Analysis), has been found here to be a very useful tool for providing the

mdem (molecular dynamics electromigration) simulator with porycrystalline samples. The

main reason for ADESHs success at providing mdem with samples is its versatility. Such

versatility allows a variety of polycrystalline cells to be created for the mdem system.

Creating the methodology to use ADESH as a sample generator for mdem is very critical

as mdem cannot generate complex samples. Thus ADESH will prove to be an integral

element for the mdem system.

12-2

ADESH as a Sample Generator for mdem

Nathan B. Terry

Introduction

When sufficient electric current is passed through an aluminum interconnect,

hillocks and voids form. This phenomenon, called electromigration, is known to be a

contributing factor to the Mure of integrated circuits. It is of great interest to investigate

this problem in the hope that some way can be found to minimize its effects.

There are several ways to study electromigration. One way is through the use of

microscopies. This can be very time consuming, however, because electromigration

occurs at unpredictable locations. An additional problem is that electromigration occurs

beneath the surface of a sample, an area microscopies generally have difficulty studying.

A second, less difficult way to study electromigration is through the use of computer

simulators * . One such program is the mdem (molecular dynamics electromigration)

simulator, created by Dr. Herb Helbig. This program investigates electromigration using

Newton's law, F=ma, to simulate the molecular dynamics of a crystal. However, the

mdem simulator does not create the samples it uses to simulate electromigration. Instead,

another simulator program, ADESH (Atomistic DEfect Simulation Handler) produced by

CASA (Center for Atomic Simulation and Analysis), was found here to be a very useful

tool in performing this task. The program's versatility allows a variety of crystal samples to

be produced for the mdem system.

Discussion of ADESH

The first step in the ADESH sample creation process is to design the desired

sample which is to be studied. This structure, known in ADESH as the computational cell

(CC), can be composed of a maximum of 2000 atoms of any element or combination of

elements. The operator can also designate the lattice structure of the unit cell: simple

12-3

cubic, body-centered cubic, face-centered cubic, diamond cubic. The user can also design

his own crystal lattice, one with up to thirty atom positions per unit cell.

Once the crystal structure is fixed, the user can also determine the orientation of

the crystal by entering the orientation in the form of the crystal's Miller indices. Once the

Miller indices are entered, the computer creates a perfect crystal of essentially infinite

dimensions, one atom of which is located at the coordinate origin. The user can then

make the CC by entering its dimensions. Whichever atoms fall inside the dimensions are

included in the CC.

The CC can have a variety of shapes, the most basic being box-like, cylindrical and

spherical. Through creative manipulations of these simple shapes, others can be created.

For example, a wedge-shaped CC can be created by making a cylinder with a limiting

angle of less than 2% radians. Likewise, cones can be created by constructing partial

spheres. Polycrystalline CCs can be constructed by using combinations of these shapes.

Grain boundaries can be created by adjusting the Miller index of each monocrystal to be

different from that of its neighbors. Additionally, the ADESH system can create CCs

composed of alloys or CCs which have vacancies at random sites. There is also a

command which allows individual atoms to be manipulated, so as to tailor the CC to the

specific needs of the user.

ADESH stores the CC in the computer as a compilation of three coordinates (X,

Y, and Z) for each atom, along with the atomic number to identify the atom type. The

program records the location of voids by assigning them an atomic number of zero. The

usefulness of such a list of coordinates is its versatility. This allows the CC to be

examined in several different ways.

One way to analyze the CC is by using the View command of the ADESH

program. The atoms of the CC can be color coded by type or by plane, the latter

command giving each atomic layer parallel to the Z plane a different color than its

12-4

neighboring planes. Once the operator has selected the color coding of the CC, he can

then choose either an XY plot, an XZ plot or a YZ plot. One of the limitations of the

ADESH View command is its inability to give a three dimensional plot. Fortunately,

however, the list of atomic coordinates the ADESH simulator produces can be read into

other plotting programs which will display three dimensional plots. SigmaPlot, a

spreadsheet program, was used to plot the bi-crystals in three dimensions.

Another advantage of the list of atomistic coordinates ADESH produces is that

these coordinates can also be transferred to other simulators. This enables the program to

generate samples for the molecular dynamics simulator used in this project.

Simulation

Two samples were created in an approximate rectangular parallelepiped composed

of two pie-shaped wedges (see appendix A, B). Each wedge, an FCC (Face-Centered

Cubic) aluminum crystal, had a different crystal orientation. The two wedges of each

sample were combined in a box-like arrangement designed to minimize the Lennard-Jones

potential energy. The energy was rninimized by moving the two wedges relative to each

other and computing the sum of the Lennard-Jones potential over all the atom pairs after

each translation until a minimum was found.

The two samples were then transferred to the molecular dynamics simulator,

mdem. The sample was relaxed via Newton's law, F=ma. The simulation heated the

sample from a temperature of OK to 10K with 5000 integration steps of 2 fs per step.

There were a total of 1896 atoms in the CC. A second, cumulative relaxation of the

sample raised the temperature from 10K to 100K with an additional 5000 integration steps

of 2fs per step.

Results

A careful comparison between the bi-crystal produced by ADESH and the same bi-

crystals after a relaxation by mdem demonstrates that the CC did relax. In the ADESH

12-5

produced bi-crystal, there was a noticeable gap between the two wedges that composed

the CC. After the first mdem relaxation, this gap was transformed into a grain boundary

where the two wedges merged together (See Appendix C, D). A further mdem relaxation

of the ADESH crystal, one in which the temperature reached almost 700K, the two

wedges merged even more extensively (See Appendix E, F). (Although the second mdem

simulation almost reached a temperature of 700K, the thermostat function of the

simulation was set to 100K, which is the reason the sample temperature was reported

from 10K to 100K in the preceding paragraph).

Conclusions

The results obtained by the mdem simulator demonstrate that the bi-crystals

produced by ADESH are usable by the mdem system. ADESH can, therefore, be used as

a sample generator for mdem. Because of ADESHs flexibility, there are many possible

polycrystalline samples which can be produced. The ADESH samples can be of any atom

type, any crystal lattice, any orientation and any shape which has fewer than 2000 atoms.

ADESH will therefore prove to be critical for providing samples for the mdem program.

12-6

References

1. H.F. Heibig, T. Bartelt, L.H. Walsh, J.V. Beasock, IEEE Dual-Use Conference 1994,
98.

12-7

Appendix A

Bi-Crystal produced by ADESH

1896 aluminum atoms

N

(0

50
45

u 40
-% 35

12-8

Appendix B

Bi-Crystal produced by ADESH

1896 aluminum atoms

-30 -20 -10 0 10 20 30 40

XAxis

12-9

Appendix C

ADESH Bi-Crystal after 60 hrs (10ps) in mdem
OKtolOK

1896 aluminum atoms

N

v>

50
45

u 40
Mfc, 35^

20 "\/~ -20
15-30

12-10

Appendix D

ADESH Bi-Crystal after 60 hrs (10ps) in mdem
OKtolOK

1896 aluminum atoms

-30 -20 -10 10 20 30

XAxis
12-11

Appendix E

ADESH Bi-Crystal after 120hrs (20 ps) in mdem
OKtolOOK

1896 aluminum atoms

N

50
45

y 40
% 35

20 >\^><-30
15^-40

12-12
*
^

Appendix F

ADESH Bi-Crystal after 120hrs (20 ps) in mdem

OKtolOOK

1896 aluminum atoms

-40 -30 -20 -10 0 10 20 30 40

XAxis

12-13

The Physical significance of the Eigenvalues in Adaptive Arrays

Brian Testa

New Hartford Senior High
33 Oxford Road

New Hartford, NY 13413

Final Report for:
High School Apprentice Program

Rome Laboratory

Sponsored by:
Air Force Office of Scientific Research

Boiling Air force Base, DC

and

Rome Laboratory

August 1994

13-1

The Physical Significance
of the Eigenvalues in
Adaptive Arrays

BRIAN P.V. TESTA,
Rome Laboratory
VINCENT C. VANNICOLA,
Rome Laboratory

Abstract

We describe the physical significance of
the eigenvalues associated with an
adaptive antenna array. We also show
how the eigenvalues are affected by the
power output of the noise sources, the
location of the noise sources, and the
spatial configuration of the array
antenna. The model used to show these
relationships consists of two array
elements and two independent noise
sources located in the far field. We show
how the eigenvalues of the covariance
matrix vary with the angle of incidence
of the noise sources.

I. Introduction

Adaptive array receiving
antennas have been of interest in the
fields of communication and radar for
several years. In the past [1] [2] and even
to this day, the operation of the adaptive
array process depends a great deal upon
the properties of the noise covariance
matrix and its associated eigenvalues.
When adaptive processes become large
in dimensionality, people may use

various methods to reduce the rank of
such matrices [3]. We find large
dimensionality in large arrays or when
adaptive processing occurs over multiple
signal domains, e.g. space time
processing [4]. In an adaptive array, a
separate coherent output is obtained
from each element(or sub-array) of a
phased-array receiving antenna. The
output of each element channel is
sampled and multiplied by a complex
weight, i.e., adjusted in both amplitude
and phase, so that while the beam is
steered in a desired look direction, nulls
are placed in the direction of noise
sources. The complex weights in the
element channels are controlled by time
variant algorithms which adapt to the
signal/noise environment. This means
that the illumination function of the
receiving array antenna is controlled
adaptively. The nature of the eigenvalues
play an important role in how the
adaptive process responds. Hudson [5]
presented general expressions for
eigenvalues of a two element colinear
array.

In this paper, we describe in
detail the physical significance of the
eigenvalues associated with an adaptive
array. Using a two element array, we
also show how the eigenvalues are
affected by varying the power output of
noise sources, the location of these noise
sources, and the spatial configuration of
the array antenna. Section II will review
the mathematical description of an
eigenvalue and the transformation
process represented thereof. In Section
III we derive the covariance matrix of a
two element antenna array. This will be
a function of the parameters governing
the array system and the signal noise
environment. In Section IV we derive

This work was supported by the High
School Apprenticeship Program and by
AFOSR Task 2304E8.

13-2

the eigenvalues ofthat matrix. Finally, in
Section V, we show some results and
draw conclusions about how the
eigenvalues behave to changes in the
array configuration and the noise
environment.

II. Eigenvalues

The eigenvalues and covariance
matrix of an adaptive array are the
central theme in this paper. Therefore,
we shall briefly review the concepts of
linear algebra [6] that pertain to these
topics with some relevance to their
physical significance.

An eigenvalue is defined as a
scalar c such that:

Aa = coc (1)

where A is an n x n matrix and a/Oa
vector. Therefore, c is an eigenvalue of
A. In order to illustrate how we arrive at
the values of c we provide the following
example: . In order to find

the eigenvalues of A we must find all
scalars c such that:

2 2
2 5

ai
a2 = c

ai
a2

(2a)

or

2a, + 2a2 = ca,
2a, + 5a2 = ca2

(2b)

This homogeneous system of two
equations and two unknowns has a
nontrivial solution if and only if the

determinant of the coefficient matrix is
zero. Thus:

c-2 -2
-2 c-5 (3)

This means that c2 - 7c + 6 = 0. Solving
for c we obtain the eigenvalues of
matrix A are c, = 1 and c2 = 6.

To find some physical
significance to what the matrix, A, and
its eigenvalues, c, represent in a signal
processing situation, let us assume that
the above A is the covariance matrix
arising from the two zero mean noise
signals, y, and y2(random variables) at
the input terminals of a network. This
may be represented by the random
vector,

Y =
yi
y2

(4)

The covariance matrix is the
expectation(average) of Y with its
Hermetian. i.e.,

A = E{YYf}=E {*>' 4 (5)

where E is the expectation(averaging)
operation, t is conjugate transpose
where the * denotes the complex
conjugate. Carrying out the above
operations and assumption

A = E
y'y',
y2y,*

yiy2+

y2y2*
(6)

where the numerical values are the
corresponding product averages. A is
therefore the covariance matrix of the
random vector, Y,.

13 -3

Figure 1 shows the physical
system described by the above
equations. For an input consisting of the
two variables in Y with covariances
shown in equation (6), we may obtain an
output

X =

(7)

whose covariance matrix, C, is a
diagonal matrix, simply by operating on
Y by the transformation(modal) matrix,
T. Hence, as in (5) and (6)

C = E{XX'}=ft o]= i o (8a)

T = 1/(5)

"c, o
0 C2

= 1 0
0 6

1/2 ~2 f
-l 2 (8b)

It can be shown that the transformation

X = TY (9)

Figure 1: Transformation Block
Diagram

transforms the vector Y whose elements
yl5y2 are correlated with one another to
the vector X whose elements are
uncorrelated with one another. In terms
of signal processing, noise sources y„y2,
having covariance matrix A, were linear
combinations of the two independent
noise sources denoted by xl5x2 and
having covariance matrix C. The

transformation, T, has converted the y„y2

back to their original individual
independent components, x„x2.
Verification (9) of this result is left to the
reader.

In finding T, one must determine
the eigenvectors of A This procedure
may be found in the literature [7].

III. Determination of Covariance
Matrix for a Two Element Antenna
Array

Now that we have reviewed the
basic concepts needed to understand this
topic, we give the example on which
most of this paper will be based. Let us
assume that there exist two elements in
an array receiving r, and r2, respectively.
In the far field, there also exist two
independent complex gaussian zero
mean noise sources (ni and m). note: It
should be made clear, that n, andn2

are completely independent of each
other. The model for this situation is
depicted in Figure 2a.

Direction
of Propagation

Figure 2a. Two Element Array
Model

As it is illustrated in the diagram,
<|)i and (j)2 are the incident angles of ni
and ii2 as they are measured from the
normal. These angles, along with the

13-4

amplitude of the noise sources will
directly affect r,, r2 and the eigenvalues
of the array covariance matrix.

The covariance matrix is
determined by taking the expectation of
the outer product of r and rras was done
in (5) produces

1/2
where j = (-1) , k = 2n/X , d = distance
between r, and r2.

We are now in a position to
evaluate the covariance matrix, M. As in
(5)

M = E{r r*}. (12)

M = E{ r rr} (10)

where: r =
r2

and 1*= \xx r2]

where * denotes the complex conjugate.
With the aid of figure 2b we determine
the values of r, and r2.[8]

wavefront

d/2 sin <|)
'Direction of Propagation

<K
r, d/2

-* (r

Figure 2b. Wavefront Incident on
Array

The spatial delay of the
wavefront incident on the array at angle
(j), is d/2 sin §x for element r,. Since the
electrical phase per unit length in the
direction of wave propagation is k=27iA<
radians, then the electrical phase delay
with respect to the array center k denotes
the propagation constant, X is the
wavelength(see Figure 2b).

With this information, we can
establish the values of n and n as:

„ _ „ j-jkdsin <t>,)/2 , „(-jkdsin <t>2)/2
II 11|C ~ lJ-2^

r2 = n,e(ikdsin*,)/2+n2e
(ikdsin*2)/2

(11)

note: The following identities have
already been proven for nl and n2

mutually independent variables. These
expressions are expanded upon in the
text. [9]

E{ni nj? = 0
E{ni n^Ni : i = 1,2 W

Now we will determine the covariance
matrix for r„r2. Expanding (12) we have

M = E
n
n [n* n] (14)

Carrying out the multiplication in
(14)

M = E
n n

n n

n n

rm
(15)

Substituting for r„ r2, r, , and r2 ,
carrying out the expectation, and
simplifying, we get

M =
N1+N2

Nie

-jkd sin <()i -jkd sin 4>2
Nie +N>e

jkd sin <|ii jkdsin<|)2
+ N2 6 N1+N2

(16)

Ni andN2 are the variances of the zero mean
complex gaussian random signals nt and n2,
respectively.

13-5

IV. Determination of Array
Eigenvalues

Now that we have determined the
covariance matrix of the array, we can
now evaluate the eigenvalues c(. In order
to accomplish this, we follow the
procedure used in the previous section.
First, we multiply the matrix M by an
eigenvector a and set it equal to c times
the same vector.

-b ± (b2 - 4ax)"2

C 2a
(20)

a= 1
b = -(2N,+2N2)
x = 2NlN2-N,N2(eikd(sin*' -siniji) , Jkd(siniji2-sinitil)-v

xi i XT ,.-jkd sin cbl -jkdsin<|>2
Ni + N2 Nie + N26 an an

NleJkdSin*| N2^kdsin*2 N1+N2 a2i
= c

a2i
_ —' i 1 i i

OR
(17a)

(N, +N2)an + (N,e-Jkdsin*' + N2e-jkdsin+2)a21 = ca„

(N1e
ikd*ü,*1+N2e

ikdii"*2)aI1 + (N1+N2)a21 = ca2I

Once all substitutions have been
made, the unsimplified equation is:

C = (N,+N2) ± [N,2 +2N,N2+N,2 -
N N, (2-eikd(S'n * 1"Sin *2'+e-Jkd(sin ♦ 1 - sin +2K, 1/2 (21)

Through basic simplification, we
compress the equation into the following
format.

C = N,+N2±[N,2+N2
2-

N N (e'kd(sin *' "sin *2)+e"Jkd(sin +' ■sin *2Him (22)

We now use the following identity
in order to further simplify this equation.

(17b) e1 =cos8+jsin0
Following the procedures set

forth in (2) and (3), we evaluate the
determinant

N,+N2-c Nie-jkdsin*'+N2e"jkdsin*2

N,eikdsin*'+N2e
ikdsin*2 N1+N2-C

The determinant of this matrix yields the
equation

c2 - (2N,+2N2)c + 2N,N2 - N,N2 (e
jkd(sin *''sin *}

(23)

Also, in an array, the distance
between the elements is set equal to one-
half of the wavelength, i.e. d = X/2.
Therefore, equation (22) becomes

(18)
C = N, + N, + [N, +2 N,N, cos 7t(sin <)), - sin f)
+ N2

2],U (23)

Jkd(sini(i2-sin (MX _ r\

Since this equation is in the form ac2 +
be + x = 0, we can evaluate c by using
the quadratic formula:

(19)

For example: If <j>, = §2, then (23)
becomes

Cl=2(N,+N2)

c2 = 0

Lgi-the array sees only one noise source
If" tpi = n/6 and §2

= -7t/6, then

c, = 2N, and c2 = 2N2

13-6

ÜL-the array sees two distinct noise
sources

The equation shows how the
eigenvalues are affected by both the
incident angles, (fo, at which the noise
signals arrive, the power of these signals,
and the spacing, d, of the array elements.
It will become apparent that the
eigenvalues a„a2 represent independent
noise sources as the antenna array output
channels see them. The cbc2 do not
necessarily have a one-to-one
correspondence with the actual sources
n„n2.

V. Examples and Conclusions

We now present several examples
which clearly illustrate the concepts that
have been presented, the manner in
which the parameters will be made to
vary is shown in Figure 3.

(Nj and N2) arriving at the antenna array.
Therefore, we know that the sum of the
eigenvalues is independent of the
distance between the elements as well as
the incident angle of the signals. We are
also aware that the eigenvalues are linear
and varying combinations of n! and n2 as
their difference in direction of arrival, <j>,
changes, they also repeat themselves at
regular intervals.

We now observe Figure 5 in order
to determine what will happen to the
eigenvalues if <j>2 remains constant at n/6
rather than 0.

From this graph, we observe that
the curves have been shifted in phase by
n/6 radians. It is important to note that
neither the range nor the wavelength of
the graph have changed. This is true for
any angle, as shown in Figure 6 where
(|)2 = TT/4.

n,

r

>i v y'n,

h 4

Figure 3. Direction of the Noise Source,
nj with n2 fixed

For example: Let us assume that d = X/2
and Nt = N2 =1. Let us also assume that
§2 = 0. We will now change the value of
()>! from -7c/2 to 7i/2.(see Figure 4)

From this graph, we can make two
observations. First, we can see that the
sum of the eigenvalues is a constant.
This constant is equal to twice the sum
of the intensities of the noise sources

Changing the angle of incidence
of one of the signals is not the only way
to change the eigenvalues. They are also
affected by the intensities of the noise
sources. In all of the previous examples
we have assumed that both intensities
were equal to 1. In the following

wcvples(Figure 7 and Figure 8), we
: that by increasing the intensity of N]
relation to N2, the range is altered and

the two eigenvalues cannot be equal.

Now, we shall observe the
effect that the distance between the
elements has on the eigenvalues.
Generally, it is assumed that d = X/2
where X is the wavelength of the
interference. However, if this is not the
case, then the effect of grating lobes

13-7

come into play when d > X/2. In Figure
9, for example, d = X.

In this rather unusual graph
the curves for the two eigenvalues
overlap and repeat over smaller intervals
of direction, §2. The repeating occurs
when n, has been positioned at a grating
lobe angle from the location of n2 in the
array pattern. This means that when the
distance between the elements is greater
than X/2, the array cannot distinguish
between two signals if they are a grating
lobe distance apart. However, since
Eigenvalue 1 is defined as

N, + N2 + [N/ + 2N,N2cos n (sin (j), - sin <|>2) +
2 N,2],/2

the graph takes on an unorthodox
appearance.

In Figure 10, d = 1/3. This graph
yields far different results.

eigenvalues cannot be equivalent. And
as seen in Figure 9, when d > X/2, the
effects of the grating lobes are apparent
at both -7t/2 and n/2 radians; this causes
an overlapping of the two curves.
Therefore, when we include both of
these parameters, the result is Figure 12.

As we can see, even though the
distance between the two arrays has
increased, since Nj * N2, the eigenvalues
cannot be equivalent. It is important to
note, however, that the grating lobes still
affect the eigenvalues.

The main point of this paper is
this: The physical significance of the
eigenvalues play a major role in signal
processing. Through the eigenvalues, we
are able to determine the relative
strengths of the jammers as well as their
relative angles of incidence.

When d = X/2, the two eigenvalues
don't quite become distinct. The distance
between the two elements has decreased
beyond the point where the array pattern
has distinct lobes. This tends to make the
two noise sources appear like one noise
source to the array. The array starts to
lose its ability to discriminate between
the two noise sources. Therefore, the
covariance matrix approaches a 1 x 1
matrix with only one eigenvalue. The
following graph(Figure 10)is the result
when the distance between the elements
is zero.

Finally, we assume that d = X , that
N, = 2, and that N2 = 1. As shown in
Figure 7, when the intensities of the two
noise sources are not equivalent, the

13-8

Eigenvalues vs. The difference between Figure 4

(j^ and <|>2

(0

3
3

ra > c
0)
s>

2 -

1 .

n

"*•-.
^ _ » *

..'■
*

c CT
i

O
(O

1

o o o

Value of <j) 1

o
co

o
a>

. Bgenvalue 1 :

Bgenvalue 2 i

;d = AV2

|N,=N2=

|<t>2=0

V)
01
3

0)

iD

Eigenvalues vs. The difference between

§i and <t>2

Value of <|> 1

Figure 5

. Bgenvalue 1

Bgenvalue 2

M
01

n > c
at

in

Eigenvalues vs. The difference between
<t>.i and (|>2

Value of <|> 1

Figure 6

. Bgenvalue 1

Bgenvalue 2

13-9

Eigenvalues vs. The difference between Figure 7
^and^j 1

Value of <|> 1

. Bgenvalue 1 i

Eigenvalue 2!

d = A/2
N=2(l
<f>2=0

!N,=1

0)
_3
ra > c

ill

Eigenvalues vs. The difference between

«j»! and <t>2

ö

6

4

2 ..

0
o o

CO
o
CD

o en

Value of <f) 1

Figure 8

. Bgenvalue 1

Bgenvalue 2 i
J I

d = X/2
N,=3@N2=1
+ 2=0

Eigenvalues vs. The difference b
<)), and +2

etw een Figure 9

4 -

I 3,
5 2 .
c
S. 1

: VV
. \ »

FigpnvaliiP 1 !

 Bgenvalue 2

* 0. i

o o o o o a co co co co ex

Value of <)> 1
§ d = \

N,=N,=1
+2=0

>

13-10

Eigenvalues vs. The difference between

<t>-| and (t>2

Figure 10

. Bgenvalue 1 !

Bgenvalue 2 i

-9
0 o o o o

CO CO

Value of <(» 1

o
CO

o
O) d = X/3

N,=N2=1

^2=0

Eigenvalues vs. The difference between
<)>., and <t>2

Figure 11

. Bgenvalue 1 '

. Bgenvalue 2 i

Value of <(> 1

d = 0
N,=N2=1
<t>2=0

Eigenvalues vs. The difference between

el»., and §2

Value of cj> 1

Figure 12

. Bgenvalue 1 I
I

Bgenvalue 2 i

N,=2@N2=1
<i>2=0

13- 11

References

1. Adaptive Arrays, Special Issue, Ieee Trans AP, Vol AP - 24,
No 5, September 1976.

2. Reed, L.S. and Brennan, L.E. Theory of Adaptive Radar, IEEE
Transactions on Aerospace and Electronic Systems, vol. AES-9, No. 2,
pp. 237-251, March 1973.

3. Goldstein, J., Williams, D., and Holder, E. Cross-spectral
subspace selection for rank reduction in partially adaptive sensor array
processing, submitted to IEEE signal Processing Letters in June 1994.

4. Wang, H., Park, H.R., and Wicks, M. On preformance
evaluation of space-time processing, Proc. IEEE Adaptive Antenna
Systems Symposium, Melville, NY, Nov. 7-8, 1994.

5. Hudson, J.E. Adaptive Array Principles, IEEE
Electromagnetic waves series, Vol 11, New York, Institution of
Electrical Engineers, 1981.

6. Kolman, Bernard. Elementary Linear Algebra, Chapter 6,
New York : Macmillan Publishing Co., Inc., second edition, 1977.

7. Van Trees, Harry L. Detection, Estimation, and Modulation
Theory, Part I, Chapter 2, New York, John Wiley and Sons, 1968.

8. Kraus, John D. Antennas, Chapter 4, New York : McGraw-
Hill Book Company Inc., 1950.

9. Papoulis, Athanasius. Probability, Random Variables, and
Stochastic Processes , New York : McGraw-Hill Book Company Inc.,
1965.

13- 12

